SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Couñago Rafael) "

Sökning: WFRF:(Couñago Rafael)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Miller, Corwin, et al. (författare)
  • Experimental evolution of adenylate kinase reveals contrasting strategies toward protein thermostability
  • 2010
  • Ingår i: Biophysical Journal. - : Elsevier BV. - 0006-3495 .- 1542-0086. ; 99:3, s. 887-896
  • Tidskriftsartikel (refereegranskat)abstract
    • Success in evolution depends critically upon the ability of organisms to adapt, a property that is also true for the proteins that contribute to the fitness of an organism. Successful protein evolution is enhanced by mutational pathways that generate a wide range of physicochemical mechanisms to adaptation. In an earlier study, we used a weak-link method to favor changes to an essential but maladapted protein, adenylate kinase (AK), within a microbial population. Six AK mutants (a single mutant followed by five double mutants) had success within the population, revealing a diverse range of adaptive strategies that included changes in nonpolar packing, protein folding dynamics, and formation of new hydrogen bonds and electrostatic networks. The first mutation, AK(BSUB) Q199R, was essential in defining the structural context that facilitated subsequent mutations as revealed by a considerable mutational epistasis and, in one case, a very strong dependence upon the order of mutations. Namely, whereas the single mutation AK(BSUB) G213E decreases protein stability by >25 degrees C, the same mutation in the background of AK(BSUB) Q199R increases stability by 3.4 degrees C, demonstrating that the order of mutations can play a critical role in favoring particular molecular pathways to adaptation. In turn, protein folding kinetics shows that four of the five AK(BSUB) double mutants utilize a strategy in which an increase in the folding rate accompanied by a decrease in the unfolding rate results in additional stability. However, one mutant exhibited a dramatic increase in the folding relative to a modest increase in the unfolding rate, suggesting a different adaptive strategy for thermostability. In all cases, an increase in the folding rates for the double mutants appears to be the preferred mechanism in conferring additional stability and may be an important aspect of protein evolution. The range of overlapping as well as contrasting strategies for success illustrates both the power and subtlety of adaptation at even the smallest unit of change, a single amino acid.
  •  
2.
  • Tomaz, Kaira C P, et al. (författare)
  • Identification of potential inhibitors of casein kinase 2 alpha of Plasmodium falciparum with potent in vitro activity.
  • 2023
  • Ingår i: Antimicrobial Agents and Chemotherapy. - 0066-4804. ; 67:11
  • Tidskriftsartikel (refereegranskat)abstract
    • Drug resistance to commercially available antimalarials is a major obstacle in malaria control and elimination, creating the need to find new antiparasitic compounds with novel mechanisms of action. The success of kinase inhibitors for oncological treatments has paved the way for the exploitation of protein kinases as drug targets in various diseases, including malaria. Casein kinases are ubiquitous serine/threonine kinases involved in a wide range of cellular processes such as mitotic checkpoint signaling, DNA damage response, and circadian rhythm. In Plasmodium, it is suggested that these protein kinases are essential for both asexual and sexual blood-stage parasites, reinforcing their potential as targets for multi-stage antimalarials. To identify new putative PfCK2α inhibitors, we utilized an in silico chemogenomic strategy involving virtual screening with docking simulations and quantitative structure-activity relationship predictions. Our investigation resulted in the discovery of a new quinazoline molecule (542), which exhibited potent activity against asexual blood stages and a high selectivity index (>100). Subsequently, we conducted chemical-genetic interaction analysis on yeasts with mutations in casein kinases. Our chemical-genetic interaction results are consistent with the hypothesis that 542 inhibits yeast Cka1, which has a hinge region with high similarity to PfCK2α. This finding is in agreement with our in silico results suggesting that 542 inhibits PfCK2α via hinge region interaction.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy