SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Daei Sajad) "

Sökning: WFRF:(Daei Sajad)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Daei, Sajad, et al. (författare)
  • Blind Asynchronous Goal-Oriented Detection for Massive Connectivity
  • 2023
  • Ingår i: 2023 21st International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks, WiOpt 2023. - : Institute of Electrical and Electronics Engineers Inc.. ; , s. 167-174
  • Konferensbidrag (refereegranskat)abstract
    • Resource allocation and multiple access schemes are instrumental for the success of communication networks, which facilitate seamless wireless connectivity among a growing population of uncoordinated and non-synchronized users. In this paper, we present a novel random access scheme that addresses one of the most severe barriers of current strategies to achieve massive connectivity and ultra reliable and low latency communications for 6G. The proposed scheme utilizes wireless channels’ angular continuous group-sparsity feature to provide low latency, high reliability, and massive access features in the face of limited time-bandwidth resources, asynchronous transmissions, and preamble errors. Specifically, a reconstruction-free goal oriented optimization problem is proposed which preserves the angular information of active devices and is then complemented by a clustering algorithm to assign active users to specific groups. This allows to identify active stationary devices according to their line of sight angles. Additionally, for mobile devices, an alternating minimization algorithm is proposed to recover their preamble, data, and channel gains simultaneously, enabling the identification of active mobile users. Simulation results show that the proposed algorithm provides excellent performance and supports a massive number of devices. Moreover, the performance of the proposed scheme is independent of the total number of devices, distinguishing it from other random access schemes. The proposed method provides a unified solution to meet the requirements of machine-type communications and ultra reliable and low latency communications, making it an important contribution to the emerging 6G networks.
  •  
2.
  • Maskan, Hoomaan, et al. (författare)
  • Demixing sines and spikes using multiple measurement vectors
  • 2023
  • Ingår i: Signal Processing. - : Elsevier. - 0165-1684 .- 1872-7557. ; 203
  • Tidskriftsartikel (refereegranskat)abstract
    • We address the line spectral estimation problem with multiple measurement corrupted vectors. Such scenarios appear in many practical applications such as radar, optics, and seismic imaging in which the measurements can be modeled as the sum of a spectrally sparse and a block-sparse signal known as outlier. Our aim is to demix the two components and for this purpose, we design a convex problem whose objective function promotes both of the structures. Using the Positive Trigonometric Polynomials (PTP) theory, we reformulate the dual problem as a Semidefinite Program (SDP). Our theoretical results state that for a fixed number of measurements N and constant number of outliers, up to O(N) spectral lines can be recovered using our SDP problem as long as a minimum frequency separation condition is satisfied. Our simulation results also show that increasing the number of samples per measurement vectors reduces the minimum required frequency separation for successful recovery.
  •  
3.
  • Razavikia, Saeed, et al. (författare)
  • Off-the-grid Blind Deconvolution and Demixing
  • 2023
  • Ingår i: GLOBECOM 2023 - 2023 IEEE Global Communications Conference. - : Institute of Electrical and Electronics Engineers (IEEE). ; , s. 7604-7610
  • Konferensbidrag (refereegranskat)abstract
    • We consider the problem of gridless blind deconvolution and demixing (GB2D) in scenarios where multiple users communicate messages through multiple unknown channels, and a single base station (BS) collects their contributions. This scenario arises in various communication fields, including wireless communications, the Internet of Things, over-the-air computation, and integrated sensing and communications. In this setup, each user's message is convolved with a multi-path channel formed by several scaled and delayed copies of Dirac spikes. The BS receives a linear combination of the convolved signals, and the goal is to recover the unknown amplitudes, continuous-indexed delays, and transmitted waveforms from a compressed vector of measurements at the BS. However, without prior knowledge of the transmitted messages and channels, GB2D is highly challenging and intractable in general. To address this issue, we assume that each user's message follows a distinct modulation scheme living in a known low-dimensional subspace. By exploiting these subspace assumptions and the sparsity of the multipath channels for different users, we transform the nonlinear GB2D problem into a matrix tuple recovery problem from a few linear measurements. To achieve this, we propose a semidefinite programming optimization that exploits the specific low-dimensional structure of the matrix tuple to recover the messages and continuous delays of different communication paths from a single received signal at the BS. Finally, our numerical experiments show that our proposed method effectively recovers all transmitted messages and the continuous delay parameters of the channels with sufficient samples.
  •  
4.
  • Seidi, Mohammadreza, et al. (författare)
  • A Novel Demixing Algorithm for Joint Target Detection and Impulsive Noise Suppression
  • 2022
  • Ingår i: IEEE Communications Letters. - : Institute of Electrical and Electronics Engineers (IEEE). - 1089-7798 .- 1558-2558. ; 26:11, s. 2750-2754
  • Tidskriftsartikel (refereegranskat)abstract
    • This work considers a collocated radar scenario where a probing signal is emitted toward the targets of interest and records the received echoes. Estimating the relative delay-Doppler shifts of the targets allows determining their relative locations and velocities. However, the received radar measurements are often affected by impulsive non-Gaussian noise which makes a few measurements partially corrupted. While demixing radar signal and impulsive noise is challenging in general by traditional subspace-based methods, atomic norm minimization (ANM) has been recently developed to perform this task in a much more efficient manner. Nonetheless, the ANM cannot identify close delay-Doppler pairs and also requires many measurements. Here, we propose a smoothed l(0) atomic optimization problem encouraging both the sparse features of the targets and the impulsive noise. We design a majorization-minimization algorithm that converges to the solution of the proposed non-convex problem using alternating direction method of multipliers (ADMM). Simulations results verify the superior accuracy of our proposed algorithm even for very close delay-Doppler pairs in comparison to ANM with around 40 dB improvement.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy