SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Dupree P.) "

Sökning: WFRF:(Dupree P.)

  • Resultat 1-10 av 11
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Frandsen, K. E. H., et al. (författare)
  • The molecular basis of polysaccharide cleavage by lytic polysaccharide monooxygenases
  • 2016
  • Ingår i: Nature Chemical Biology. - : Springer Science and Business Media LLC. - 1552-4450 .- 1552-4469. ; 12:4, s. 298-
  • Tidskriftsartikel (refereegranskat)abstract
    • Lytic polysaccharide monooxygenases (LPMOs) are copper-containing enzymes that oxidatively break down recalcitrant polysaccharides such as cellulose and chitin. Since their discovery, LPMOs have become integral factors in the industrial utilization of biomass, especially in the sustainable generation of cellulosic bioethanol. We report here a structural determination of an LPMO-oligosaccharide complex, yielding detailed insights into the mechanism of action of these enzymes. Using a combination of structure and electron paramagnetic resonance spectroscopy, we reveal the means by which LPMOs interact with saccharide substrates. We further uncover electronic and structural features of the enzyme active site, showing how LPMOs orchestrate the reaction of oxygen with polysaccharide chains.
  •  
2.
  • Antzutkin, Oleg, et al. (författare)
  • Binding of Aluminium(III)-Citrate Complexes, [Al3(H-1Cit)3(OH)]-4 and [Al3(H-1Cit)3(OH)4]-7, to Alzheimer's A-beta(1-40) Peptides : In situ Atomic Force, Electron Microscopy and Solid State 13C and 27Al NMR Studies
  • 2005
  • Ingår i: Sixth Keele Meeting on Aluminium. - : Centro de Estudos do Ambiente e Mar, Universidade de Aveiro. ; , s. 16-
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • It is believed that Alzheimer's disease (AD) amyloid-β-peptide (Aβ) deposits contribute directly to the disease's progressive neurodegeneration. Aggregation cascade for Aβ peptides, its relevance to neurotoxicity in the course of AD, various factors modulating Aβ aggregation kinetics and experimental methods useful for these studies were recently discussed [1]. Al(III), Zn(II), Cu(II) and Fe(III) ions are often colocalized at the center of the core of Alzheimer's amyloid plaques [2] and are suggested to promote aggregation of physiological concentrations of Aβ [3]. It has also been suggested that Al can block calcium permeable putative Aβ-peptide channels in bilayer membranes [4]. Therefore studies of complexation of metal ions with Aβ-oligomers and fibrils are important in the search for the causes of and potential treatments for AD.We studied effects of highly soluble and biologically relevant aluminium(III)-citrate compounds, [Al3(H-1Cit)3(OH)]-4 and [Al3(H-1Cit)3(OH)4]-7, on the fibrillogenesis of Aβ(1-40). All resonances in 156.37 MHz 27Al and 90.52 MHz 13C MAS NMR spectra of powder Al(III)-citrate complexes were assigned. 27Al MAS NMR of dialysed samples of Aβ(1-40) co-incubated with the Al(III)-citrate complexes at different concentrations in TRIS buffer solutions, pH 7.4, shows that Al(III)-citrates bind to Aβ(1-40) as [Al3(H-1Cit)3(OH)]-4 and either accelerate ([Al3(H-1Cit)3(OH)]-4 complex) or retard ([Al3(H-1Cit)3(OH)4]-7 compound) aggregation of Aβ(1-40) as revealed by AFM. [1] ON Antzutkin, Magn. Reson. Chem. 42 (2004) 231; [2] MA Lovell et al., J. Neurol. Sci. 158 (1998) 47; Ch Exley et al., Al and Alzheimer's disease, Ch Exley (Ed)1998) 47; Ch Exley , Ch Exley (Ed) Elsevier Science, 2001, 421; [3] PW Mantyh et al., J. Neurochem. 61 (1993) 1171; [4] N Arispe et al, PNAS 90 (1993) 567.
  •  
3.
  • Sneden, Christopher, et al. (författare)
  • The Active Chromospheres of Lithium-rich Red Giant Stars
  • 2022
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 940:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We have gathered near-infrared zyJ-band high-resolution spectra of nearly 300 field red giant stars with known lithium abundances in order to survey their He i λ10830 absorption strengths. This transition is an indicator of chromospheric activity and/or mass loss in red giants. The majority of stars in our sample reside in the red clump or red horizontal branch based on their V − J, MV color–magnitude diagram, and Gaia Teff and log(g) values. Most of our target stars are Li-poor in the sense of having normally low Li abundances, defined here as log ò(Li) < 1.25. Over 90% of these Li-poor stars have weak λ10830 features. However, more than half of the 83 Li-rich stars (log ò(Li) > 1.25) have strong λ10830 absorptions. These large λ10830 lines signal excess chromospheric activity in Li-rich stars; there is almost no indication of significant mass loss. The Li-rich giants may also have a higher binary fraction than Li-poor stars, based on their astrometric data. It appears likely that both residence on the horizontal branch and present or past binary interaction play roles in the significant Li–He connection established in this survey.
  •  
4.
  • Wei, Juan, et al. (författare)
  • Amyloid Hydrogen Bonding Polymorphism Evaluated by 15N{17O}REAPDOR Solid-State NMR and Ultra-High Resolution Fourier Transform Ion Cyclotron Resonance Mass Spectrometry
  • 2016
  • Ingår i: Biochemistry. - : American Chemical Society (ACS). - 0006-2960 .- 1520-4995. ; 55:14, s. 2065-2068
  • Tidskriftsartikel (refereegranskat)abstract
    • A combined approach, using Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) and solid-state NMR (Nuclear Magnetic Resonance), shows a high degree of polymorphism exhibited by Aβ species in forming hydrogen-bonded networks. Two Alzheimer’s Aβ peptides, Ac-Aβ16–22-NH2 and Aβ11–25, selectively labeled with 17O and 15N at specific amino acid residues were investigated. The total amount of peptides labeled with 17O as measured by FTICR-MS enabled the interpretation of dephasing observed in 15N{17O}REAPDOR solid-state NMR experiments. Specifically, about one-third of the Aβ peptides were found to be involved in the formation of a specific >C═17O···H–15N hydrogen bond with their neighbor peptide molecules, and we hypothesize that the rest of the molecules undergo ± n off-registry shifts in their hydrogen bonding networks.
  •  
5.
  • Albert, Andreas, et al. (författare)
  • Recommendations of the LHC Dark Matter Working Group : Comparing LHC searches for dark matter mediators in visible and invisible decay channels and calculations of the thermal relic density
  • 2019
  • Ingår i: Physics of the Dark Universe. - : Elsevier BV. - 2212-6864. ; 26
  • Tidskriftsartikel (refereegranskat)abstract
    • Weakly-coupled TeV-scale particles may mediate the interactions between normal matter and dark matter. If so, the LHC would produce dark matter through these mediators, leading to the familiar “mono-X” search signatures, but the mediators would also produce signals without missing momentum via the same vertices involved in their production. This document from the LHC Dark Matter Working Group suggests how to compare searches for these two types of signals in case of vector and axial-vector mediators, based on a workshop that took place on September 19/20, 2016 and subsequent discussions. These suggestions include how to extend the spin-1 mediated simplified models already in widespread use to include lepton couplings. This document also provides analytic calculations of the relic density in the simplified models and reports an issue that arose when ATLAS and CMS first began to use preliminary numerical calculations of the dark matter relic density in these models.
  •  
6.
  • Antzutkin, Oleg, et al. (författare)
  • Exploring solid-state 17O NMR to distinguish secondary structures in Alzheimer's Aβ fibrils
  • 2009
  • Ingår i: Euromar 2009. ; , s. 107-
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • It has been shown by a large number of studies that Alzheimer's disease (AD) amyloid-β-peptide (Aβ) deposits contribute directly to the disease's progressive neurodegeneration. Aggregation cascade for Aβ peptides, its relevance to neurotoxicity in the course of AD, various factors modulating Aβ aggregation kinetics and experimental methods useful for these studies were recently discussed [1]. Results of Tycko and co-workers point at neurotoxicity in vitro of the two different types of Alzheimer's amyloid fibrils dispersed by ultrasonication into small fragments [2]. The high toxicity of Aβ oligomers in vitro has been discussed by Stege et. al who have found that the molecular chaperone αB-crystallin prevents Aβ from forming amyloid fibrils but nevertheless enhances Aβ toxicity [3]. Glabe and co-workes successfully prepared antibodies for Aβ oligomers and small spherical aggregates using nanogold technology [4]. They also have shown that these antibodies decrease toxicity of Aβ for SH-SY5Y human neuroblastoma cell cultures in vitro [4]. In this concern both structure of Aβ-oligomers/fibrils and the specific  interaction (aggregation/fusion) of Aβ peptides with nerve cell membranes is of a particular importance [5].We explore Solid-State 17O NMR on selectively 17O,13C,15N-labeled Aβ(1-40), Aβ(11-25) and Ac-Aβ(16-22)-NH2 peptides to distinguish a parallel and anti-parallel β-sheet secondary structures in β-NH2 peptides to distinguish a parallel and anti-parallel β-sheet secondary structures in amyloid fibrils. Aβ(1-40) fibrils form in-registry parallel β-sheets [6], while Aβ(11-25) [7] and Ac-Aβ(16-22)-NH2 [8] form different anti-parallel β-sheet structures, which were previously identified β-NH2 [8] form different anti-parallel β-sheet structures, which were previously identified by 13C multiple-quantum and 13C{15N} REDOR solid-state NMR. In our unpublished work presented here it was found that 17O NMR chemical shifts are sensitive to the type of the secondary structure, i. e. a parallel vs. an anti-parallel β-sheet structures, while the quadrupolar parameters of 17O nuclei unexpectedly do not vary beyond the error limits in the simulated lineshapes of both fibrillized and unfibrillized peptide systems. Results of more advanced solidstate NMR techniques to measure heteronuclear distances, 15N{17O}-REAPDOR, 15N{17O}-TRAPDOR and 17O{15N}-REDOR on selectively 17O-Val18 and 15N-Phe20 labeled Ac-Aβ(16-22)-NH2 fibrils will be also discussed. These novel solid-state NMR experiments will provide additional tools for measuring hydrogen bonding in different secondary structures of peptides in amyloid fibrils.[1.] O.N.Antzutkin, Magn. Reson. Chem. 42 (2004) 231-246; [2.] A.Petkova et al. Science 307 (2005) 262-265; [3.] G.J.J.Stege, et al. Biochem. Biophys. Res. Comm., 262 (1999) 152-156;[4.] R.Kayed et al. Science, 300 (2003) 486-489; [5.] M.Bokvist, et al. J. Mol. Biol. 335 (2004) 1039-1049; [6.] O.N. Antzutkin, et al. Proc. Nat. Acad. Sci, U.S.A., 97 (2000) 13045-13050;[7.] A.T. Petkova, et al. J. Mol. Biol., 335 (2004) 247-260;[8.] J.J. Balbach, Y. (2000) 13045-13050; [9] A.T. Petkova, (2004) 247-260; [10] J.J. Balbach, Y.Ishii, O.N. Antzutkin, et al. Biochemistry 39 (2000) 13748-13759.
  •  
7.
  •  
8.
  • Antzutkin, Oleg, et al. (författare)
  • Hydrogen bonding in Alzheimer’s amyloid-β fibrils probed by 15N{17O} REAPDOR solid-state NMR spectroscopy
  • 2012
  • Ingår i: Angewandte Chemie. - : Wiley. - 0044-8249. ; 124:41, s. 10435-10438
  • Tidskriftsartikel (refereegranskat)abstract
    • Nach selektiver Markierung mit 17O und 15N wurden mithilfe von 15N{17O}-REAPDOR-NMR-Spektroskopie intermolekulare C17O⋅⋅⋅H15N-Wasserstoffbrücken in Ac-Aβ(16–22)-NH2- (siehe Schema) und Aβ(11–25)-Amyloidfibrillen untersucht, die mit der Alzheimer-Krankheit in Verbindung gebracht werden. Die Methode, die eine Bestätigung für die Struktur dieser Fibrillen lieferte, könnte auch im Zusammenhang mit anderen biologischen Proben nützlich sein.
  •  
9.
  • Antzutkin, Oleg, et al. (författare)
  • Hydrogen bonding in Alzheimer’s amyloid-β fibrils probed by 15N{17O} REAPDOR solid-state NMR spectroscopy
  • 2012
  • Ingår i: Angewandte Chemie International Edition. - : Wiley. - 1433-7851 .- 1521-3773. ; 51:41, s. 10289-10292
  • Tidskriftsartikel (refereegranskat)abstract
    • An exclusive label: 15N{17O} REAPDOR NMR was used to validate intermolecular C17O⋅⋅⋅H15N hydrogen bonding in Ac-Aβ(16–22)-NH2 (see scheme) and Aβ(11–25) amyloid fibrils, which are associated with Alzheimer’s disease, by selectively labeling them with 17O and 15N. This method was effective for confirming the structure of these fibrils, and could be useful for a number of other biological samples.
  •  
10.
  • Wilson, L. F. L., et al. (författare)
  • The structure of EXTL3 helps to explain the different roles of bi-domain exostosins in heparan sulfate synthesis
  • 2022
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 13:3314
  • Tidskriftsartikel (refereegranskat)abstract
    • Heparan sulfate is a highly modified O-linked glycan that performs diverse physiological roles in animal tissues. Though quickly modified, it is initially synthesised as a polysaccharide of alternating β-d-glucuronosyl and N-acetyl-α-d-glucosaminyl residues by exostosins. These enzymes generally possess two glycosyltransferase domains (GT47 and GT64)—each thought to add one type of monosaccharide unit to the backbone. Although previous structures of murine exostosin-like 2 (EXTL2) provide insight into the GT64 domain, the rest of the bi-domain architecture is yet to be characterised; hence, how the two domains co-operate is unknown. Here, we report the structure of human exostosin-like 3 (EXTL3) in apo and UDP-bound forms. We explain the ineffectiveness of EXTL3’s GT47 domain to transfer β-d-glucuronosyl units, and we observe that, in general, the bi-domain architecture would preclude a processive mechanism of backbone extension. We therefore propose that heparan sulfate backbone polymerisation occurs by a simple dissociative mechanism.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 11

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy