SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Egedal J.) "

Sökning: WFRF:(Egedal J.)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Lavraud, B., et al. (författare)
  • Currents and associated electron scattering and bouncing near the diffusion region at Earth's magnetopause
  • 2016
  • Ingår i: Geophysical Research Letters. - 0094-8276 .- 1944-8007. ; 43:7, s. 3042-3050
  • Tidskriftsartikel (refereegranskat)abstract
    • Based on high-resolution measurements from NASA's Magnetospheric Multiscale mission, we present the dynamics of electrons associated with current systems observed near the diffusion region of magnetic reconnection at Earth's magnetopause. Using pitch angle distributions (PAD) and magnetic curvature analysis, we demonstrate the occurrence of electron scattering in the curved magnetic field of the diffusion region down to energies of 20 eV. We show that scattering occurs closer to the current sheet as the electron energy decreases. The scattering of inflowing electrons, associated with field-aligned electrostatic potentials and Hall currents, produces a new population of scattered electrons with broader PAD which bounce back and forth in the exhaust. Except at the center of the diffusion region the two populations are collocated and appear to behave adiabatically: the inflowing electron PAD focuses inward (toward lower magnetic field), while the bouncing population PAD gradually peaks at 90 degrees away from the center (where it mirrors owing to higher magnetic field and probable field-aligned potentials).
  •  
2.
  • Graham, Daniel B., et al. (författare)
  • Universality of Lower Hybrid Waves at Earth's Magnetopause
  • 2019
  • Ingår i: Journal of Geophysical Research - Space Physics. - : John Wiley & Sons. - 2169-9380 .- 2169-9402. ; 124:11, s. 8727-8760
  • Tidskriftsartikel (refereegranskat)abstract
    • Waves around the lower hybrid frequency are frequently observed at Earth's magnetopause and readily reach very large amplitudes. Determining the properties of lower hybrid waves is crucial because they are thought to contribute to electron and ion heating, cross‐field particle diffusion, anomalous resistivity, and energy transfer between electrons and ions. All these processes could play an important role in magnetic reconnection at the magnetopause and the evolution of the boundary layer. In this paper, the properties of lower hybrid waves at Earth's magnetopause are investigated using the Magnetospheric Multiscale mission. For the first time, the properties of the waves are investigated using fields and direct particle measurements. The highest‐resolution electron moments resolve the velocity and density fluctuations of lower hybrid waves, confirming that electrons remain approximately frozen in at lower hybrid wave frequencies. Using fields and particle moments, the dispersion relation is constructed and the wave‐normal angle is estimated to be close to 90° to the background magnetic field. The waves are shown to have a finite parallel wave vector, suggesting that they can interact with parallel propagating electrons. The observed wave properties are shown to agree with theoretical predictions, the previously used single‐spacecraft method, and four‐spacecraft timing analyses. These results show that single‐spacecraft methods can accurately determine lower hybrid wave properties.
  •  
3.
  • Li, Wenya, et al. (författare)
  • Upper-Hybrid Waves Driven by Meandering Electrons Around Magnetic Reconnection X Line
  • 2021
  • Ingår i: Geophysical Research Letters. - : American Geophysical Union (AGU). - 0094-8276 .- 1944-8007. ; 48:16
  • Tidskriftsartikel (refereegranskat)abstract
    • Magnetic reconnection is a fundamental process in collisionless space plasma environment, and plasma waves relevant to the kinetic interactions can have a significant impact on the multiscale behavior of reconnection. Here, we present Magnetospheric Multiscale (MMS) observations during an encounter of an X line of symmetric magnetic reconnection in the magnetotail. The X line is characterized by reversals of ion and electron jets and electromagnetic fields, agyrotropic electron velocity distribution functions (VDFs), and an electron-scale current sheet. MMS observe large-amplitude nonlinear upper-hybrid (UH) waves on both sides of the neutral line, and the wave amplitudes have highly localized distribution along the normal direction. The inbound meandering electrons drive the UH waves, releasing the free energy stored from the reconnection electric field along the meandering trajectories. The interaction between the meandering electrons and the UH waves may modify the balance of the reconnection electric field around the X line. Plain Language Summary The electron-scale kinetic physics in the electron diffusion region (EDR) controls how magnetic field lines break and reconnect. Electron crescent, an indicator of EDR, can drive high-frequency electrostatic waves around EDR. For the first time, the upper-hybrid (UH) waves are observed on both sides of the X line and we show the direct association between the UH waves and the reconnection electric field. The strong wave-electron interaction can change the electron-scale dynamics and may modify the reconnection electric field. This study demonstrates that the UH waves may play an important role in controlling the reconnection rate.
  •  
4.
  • Schroeder, J. M., et al. (författare)
  • 2D Reconstruction of Magnetotail Electron Diffusion Region Measured by MMS
  • 2022
  • Ingår i: Geophysical Research Letters. - : American Geophysical Union (AGU). - 0094-8276 .- 1944-8007. ; 49:19
  • Tidskriftsartikel (refereegranskat)abstract
    • Models for collisionless magnetic reconnection in near-Earth space are distinctly characterized as 2D or 3D. In 2D kinetic models, the frozen-in law for the electron fluid is usually broken by laminar dynamics involving structures set by the electron orbit size, while in 3D models the width of the electron diffusion region is broadened by turbulent effects. We present an analysis of in situ spacecraft observations from the Earth's magnetotail of a fortuitous encounter with an active reconnection region, mapping the observations onto a 2D spatial domain. While the event likely was perturbed by low-frequency 3D dynamics, the structure of the electron diffusion region remains consistent with results from a 2D kinetic simulation. As such, the event represents a unique validation of 2D kinetic, and laminar reconnection models.
  •  
5.
  • Tang, B-B, et al. (författare)
  • Electron Mixing and Isotropization in the Exhaust of Asymmetric Magnetic Reconnection With a Guide Field
  • 2020
  • Ingår i: Geophysical Research Letters. - : American Geophysical Union (AGU). - 0094-8276 .- 1944-8007. ; 47:14
  • Tidskriftsartikel (refereegranskat)abstract
    • We investigate an exhaust crossing of asymmetric guide field reconnection observed by Magnetospheric Multiscale (MMS) mission at Earth's dayside magnetopause. One MMS spacecraft (MMS 4) observes multicomponent electron distributions, including two counterstreaming electron beams, while the other three MMS spacecraft, with a separation of similar to 30 km, record nearly isotropic electron distributions. As counterstreaming electrons are unstable for the electron two-stream instability, our observations suggest that the electrostatic waves generated by the fast-growing electron two-stream instability can contribute to the rapid isotropization of electron distributions in the reconnection exhaust, indicating that wave-particle interactions play an important role in electron dynamics.
  •  
6.
  • Cozzani, Giulia, et al. (författare)
  • Structure of a Perturbed Magnetic Reconnection Electron Diffusion Region in the Earth's Magnetotail
  • 2021
  • Ingår i: Physical Review Letters. - : American Physical Society (APS). - 0031-9007 .- 1079-7114. ; 127:21
  • Tidskriftsartikel (refereegranskat)abstract
    • We report in situ observations of an electron diffusion region (EDR) and adjacent separatrix region in the Earth's magnetotail. We observe significant magnetic field oscillations near the lower hybrid frequency which propagate perpendicularly to the reconnection plane. We also find that the strong electron-scale gradients close to the EDR exhibit significant oscillations at a similar frequency. Such oscillations are not expected for a crossing of a steady 2D EDR, and can be explained by a complex motion of the reconnection plane induced by current sheet kinking propagating in the out-of-reconnection-plane direction. Thus, all three spatial dimensions have to be taken into account to explain the observed perturbed EDR crossing. These results shed light on the interplay between magnetic reconnection and current sheet drift instabilities in electron-scale current sheets and highlight the need for adopting a 3D description of the EDR, going beyond the two-dimensional and steady-state conception of reconnection.
  •  
7.
  • Oka, Mitsuo, et al. (författare)
  • Particle Acceleration by Magnetic Reconnection in Geospace
  • 2023
  • Ingår i: Space Science Reviews. - : Springer. - 0038-6308 .- 1572-9672. ; 219
  • Forskningsöversikt (refereegranskat)abstract
    • Particles are accelerated to very high, non-thermal energies during explosive energy-release phenomena in space, solar, and astrophysical plasma environments. While it has been established that magnetic reconnection plays an important role in the dynamics of Earth's magnetosphere, it remains unclear how magnetic reconnection can further explain particle acceleration to non-thermal energies. Here we review recent progress in our understanding of particle acceleration by magnetic reconnection in Earth's magnetosphere. With improved resolutions, recent spacecraft missions have enabled detailed studies of particle acceleration at various structures such as the diffusion region, separatrix, jets, magnetic islands (flux ropes), and dipolarization front. With the guiding-center approximation of particle motion, many studies have discussed the relative importance of the parallel electric field as well as the Fermi and betatron effects. However, in order to fully understand the particle acceleration mechanism and further compare with particle acceleration in solar and astrophysical plasma environments, there is a need for further investigation of, for example, energy partition and the precise role of turbulence.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy