SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Eriksson Therese 1980 ) "

Sökning: WFRF:(Eriksson Therese 1980 )

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Eriksson, Therese, 1980- (författare)
  • Exploiting Drosophila as a model system for studying anaplastic lymphoma kinase in vivo
  • 2010
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Anaplastic Lymphoma Kinase (ALK) is a Receptor Tyrosine Kinase (RTK) and an oncogene associated with several human diseases, but its normal function in humans and other vertebrates is unclear. Drosophila melanogaster has an ALK homolog, demonstrating that the RTK has been conserved throughout evolution. This makes Drosophila a suitable model organism for studying not only Drosophila ALK function, but also to study mammalian forms of ALK. In Drosophila the ligand Jeb activates ALK, initiating signaling crucial for visceral mesoderm development. The activating ligand for mammalian ALK is unclear, and for this reason Drosophila was employed in a cross-species approach to investigate whether Drosophila Jeb can activate mouse ALK. Jeb is unable to activate mouse ALK, and therefore mouse ALK is unable to substitute for and rescue the Drosophila ALK mutant phenotype. This suggests that there has been significant evolution in the ALK-ligand relationship between the mouse and Drosophila. In humans ALK has recently been shown to be involved in the development of neuroblastoma, a cancer tumor in children. I have developed a Drosophila model for examining human gain of function ALK mutants found in neuroblastoma patients. The various ALK variants have acquired point mutations in the kinase domain that have been predicted to activate the RTK in a constitutive and ligand independent manner. When expressed in the fly eye, active human ALK mutants result in a rough eye phenotype, while inactive wild type ALK does not, due to the lack of an activating ligand in the fly. In this way  several of the ALK mutations identified in neuroblastoma patients could be confirmed to be activated in a ligand independent manner. Moreover, a novel ALK mutant; ALKF1174S, was discovered in a neuroblastoma patient and was in the Drosophila model shown to be a gain of function mutation, and a previously predicted gain of function mutation; ALKI1250T, was shown to be a kinase dead mutation. This fly model can also be used for testing ALK selective inhibitors, for identifying activating ligands for human ALK and for identifying conserved components of the ALK signaling pathway. Gut musculature development in Drosophila is dependent on ALK signaling, while somatic muscle development is not. Proteins of the Wasp-Scar signaling network regulate Arp2/3-complex mediated actin polymerization, and I have investigated their function in visceral and somatic muscle fusion. I found that Verprolin and other members of this protein family are essential for somatic but not visceral muscle development. Despite fusion defects in both tissues in Verprolin and other examined mutants, gut development proceeds, suggesting that fusion is not crucial for visceral mesoderm development. Hence the actin polymerization machinery functions in both somatic and visceral muscle fusion, but this process only appears to be essential in somatic muscle development.
  •  
2.
  • Eriksson, Therese, 1992-, et al. (författare)
  • Polyketones as Host Materials for Solid Polymer Electrolytes
  • 2020
  • Ingår i: Journal of the Electrochemical Society. - : ELECTROCHEMICAL SOC INC. - 0013-4651 .- 1945-7111. ; 167:7
  • Tidskriftsartikel (refereegranskat)abstract
    • While solid polymer electrolytes (SPEs) have great potential for use in future lithium-based batteries, they do, however, not display conductivity at a sufficient level as compared to liquid electrolytes. To reach the needed requirements of lithium batteries it is therefore necessary to explore new materials classes to serve as novel polymer hosts. In this work, SPEs based on the polyketone poly(3,3-dimethylpentane-2,4-dione) were investigated. Polyketones are structurally similar to several polycarbonate and polyester SPE hosts investigated before but have, due to the lack of additional oxygen atoms in the coordinating motif, even more electronwithdrawing carbonyl groups and could therefore display better properties for coordination to the salt cation. In electrolyte compositions comprising 25-40 wt% LiTFSI salt, it was observed that this polyketone indeed conducts lithium ions with a high cation transference number, but that the ionic conductivity is limited by the semi-crystallinity of the polymer matrix. The crystallinity decreases with increasing salt content, and a fully amorphous SPE can be produced at 40 wt% salt, accompanied by an ionic conductivity of 3 x 10(-7) S cm(-1) at 32 degrees C. This opens up for further exploration of polyketone systems for SPE-based batteries. 
  •  
3.
  • Eriksson, Therese, 1992-, et al. (författare)
  • The Role of Coordination Strength in Solid Polymer Electrolytes: Compositional Dependence of Transference Numbers in thePoly(ε-Caprolactone)–Poly(Trimethylene Carbonate) System
  • 2021
  • Ingår i: Physical Chemistry, Chemical Physics - PCCP. - : Royal Society of Chemistry. - 1463-9076 .- 1463-9084. ; 23:45, s. 25550-25557
  • Tidskriftsartikel (refereegranskat)abstract
    • Both polyesters and polycarbonates have been proposed as alternatives to polyethers as host materials for future polymer electrolytes for solid-state lithium-ion batteries. While being comparatively similar functional groups, the electron density on the coordinating carbonyl oxygen is different, thereby rendering different coordinating strength towards lithium ions. In this study, the transport properties of poly(epsilon-caprolactone) and poly(trimethylene carbonate) as well as random copolymers of systematically varied composition of the two have been investigated, in order to better elucidate the role of the coordination strength. The cationic transference number, a property well-connected with the complexing ability of the polymer, was shown to depend almost linearly on the ester content of the copolymer, increasing from 0.49 for the pure poly(epsilon-caprolactone) to 0.83 for pure poly(trimethylene carbonate). Contradictory to the transference number measurements that suggest a stronger lithium-to-ester coordination, DFT calculations showed that the carbonyl oxygen in the carbonate coordinates more strongly to the lithium ion than that of the ester. FT-IR measurements showed the coordination number to be higher in the polyester system, resulting in a higher total coordination strength and thereby resolving the paradox. This likely originates in properties that are specific of polymeric solvent systems, e.g. steric properties and chain dynamics, which influence the coordination chemistry. These results highlight the complexity in polymeric systems and their ion transport properties in comparison to low-molecular-weight analogues, and how polymer structure and steric effects together affect the coordination strength and transport properties.
  •  
4.
  • Martinsson, Tommy, 1956, et al. (författare)
  • Appearance of the novel activating F1174S ALK mutation in neuroblastoma correlates with aggressive tumor progression and unresponsiveness to therapy.
  • 2011
  • Ingår i: Cancer research. - : American Association for Cancer Research. - 1538-7445 .- 0008-5472. ; 71:1, s. 98-105
  • Tidskriftsartikel (refereegranskat)abstract
    • Mutations in the kinase domain of the ALK kinase have emerged recently as important players in the genetics of the childhood tumor neuroblastoma. Here, we report the appearance of a novel ALK mutation in neuroblastoma, correlating with aggressive tumor behavior. Analyses of genomic DNA from biopsy samples initially showed ALK sequence to be wild type. However, during disease progression, mutation of amino acid F1174 to a serine within the ALK kinase domain was observed, which correlated with aggressive neuroblastoma progression in the patient. We show that mutation of F1174 to serine generates a potent gain-of-function mutant, as observed in 2 independent systems. First, PC12 cell lines expressing ALK(F1174S) display ligand-independent activation of ALK and further downstream signaling activation. Second, analysis of ALK(F1174S) in Drosophila models confirms that the mutation mediates a strong, rough eye phenotype upon expression in the developing eye. Thus, we report a novel ALK(F1174S) mutation that displays ligand-independent activity in vivo, correlating with rapid and treatment-resistant tumor growth. The study also shows that initial screening in the first tumor biopsy of a patient may not be sufficient and that further molecular analysis, in particular in tumor progression and/or tumor relapse, is warranted for better understanding of the treatment of neuroblastoma patients.
  •  
5.
  • Schönherr, Christina, et al. (författare)
  • The neuroblastoma ALK(I1250T) mutation is a kinase-dead RTK in vitro and in vivo
  • 2011
  • Ingår i: Translational Oncology. - : Elsevier BV. - 1944-7124 .- 1936-5233. ; 4:4, s. 258-265
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • Activating mutations in the kinase domain of anaplastic lymphoma kinase (ALK) have recently been shown to be an important determinant in the genetics of the childhood tumor neuroblastoma. Here we discuss an in-depth analysis of one of the reported gain-of-function ALK mutations—ALKI1250T—identified in the germ line DNA of one patient. Our analyses were performed in cell culture-based systems and subsequently confirmed in a Drosophila model. The results presented here indicate that the germ line ALKI1250T mutation is most probably not a determinant for tumor initiation or progression and, in contrast, seems to generate a kinase-dead mutation in the ALK receptor tyrosine kinase (RTK). Consistent with this, stimulation with agonist ALK antibodies fails to lead to stimulation of ALKI1250T and we were unable to detect tyrosine phosphorylation under any circumstances. In agreement, ALKI1250T is unable to activate downstream signaling pathways or to mediate neurite outgrowth, in contrast to the activated wild-type ALK receptor or the activating ALKF1174S mutant. Identical results were obtained when the ALKI1250T mutant was expressed in a Drosophila model, confirming the lack of activity of this mutant ALK RTK. We suggest that the ALKI1250T mutation leads to a kinase-dead ALK RTK, in stark contrast to assumed gain-of-function status, with significant implications for patients reported to carry this particular ALK mutation.
  •  
6.
  • Yang, Hai-Ling, et al. (författare)
  • The ligand Jelly Belly (Jeb) activates the Drosophila Alk RTK to drive PC12 cell differentiation, but is unable to activate the mouse ALK RTK
  • 2007
  • Ingår i: Journal of experimental zoology, part B Molecular and developmental evolution. - : Wiley. - 1552-5007 .- 1552-5015. ; 308:3, s. 269-282
  • Tidskriftsartikel (refereegranskat)abstract
    • The Drosophila Alk receptor tyrosine kinase (RTK) drives founder cell specification in the developing visceral mesoderm and is crucial for the formation of the fly gut. Activation of Alk occurs in response to the secreted ligand Jelly Belly. No homologues of Jelly Belly are described in vertebrates, therefore we have approached the question of the evolutionary conservation of the Jeb-Alk interaction by asking whether vertebrate ALK is able to function in Drosophila. Here we show that the mouse ALK RTK is unable to rescue a Drosophila Alk mutant, indicating that mouse ALK is unable to recognise and respond to the Drosophila Jeb molecule. Furthermore, the overexpression of a dominant-negative Drosophila Alk transgene is able to block the visceral muscle fusion event, which an identically designed dominant-negative construct for the mouse ALK is not. Using PC12 cells as a model for neurite outgrowth, we show here for the first time that activation of dAlk by Jeb results in neurite extension. However, the mouse Alk receptor is unable to respond in any way to the Drosophila Jeb protein in the PC12 system. In conclusion, we find that the mammalian ALK receptor is unable to respond to the Jeb ligand in vivo or in vitro. These results suggest that either (i) mouse ALK and mouse Jeb have co-evolved to the extent that mALK can no longer recognise the Drosophila Jeb ligand or (ii) that the mALK RTK has evolved such that it is no longer activated by a Jeb-like molecule in vertebrates.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy