SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Fang Dongfeng) "

Sökning: WFRF:(Fang Dongfeng)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • de las Fuentes, Lisa, et al. (författare)
  • Gene-educational attainment interactions in a multi-ancestry genome-wide meta-analysis identify novel blood pressure loci
  • 2021
  • Ingår i: Molecular Psychiatry. - : Springer Nature. - 1359-4184 .- 1476-5578. ; 26:6, s. 2111-2125
  • Tidskriftsartikel (refereegranskat)abstract
    • Educational attainment is widely used as a surrogate for socioeconomic status (SES). Low SES is a risk factor for hypertension and high blood pressure (BP). To identify novel BP loci, we performed multi-ancestry meta-analyses accounting for gene-educational attainment interactions using two variables, “Some College” (yes/no) and “Graduated College” (yes/no). Interactions were evaluated using both a 1 degree of freedom (DF) interaction term and a 2DF joint test of genetic and interaction effects. Analyses were performed for systolic BP, diastolic BP, mean arterial pressure, and pulse pressure. We pursued genome-wide interrogation in Stage 1 studies (N = 117 438) and follow-up on promising variants in Stage 2 studies (N = 293 787) in five ancestry groups. Through combined meta-analyses of Stages 1 and 2, we identified 84 known and 18 novel BP loci at genome-wide significance level (P < 5 × 10-8). Two novel loci were identified based on the 1DF test of interaction with educational attainment, while the remaining 16 loci were identified through the 2DF joint test of genetic and interaction effects. Ten novel loci were identified in individuals of African ancestry. Several novel loci show strong biological plausibility since they involve physiologic systems implicated in BP regulation. They include genes involved in the central nervous system-adrenal signaling axis (ZDHHC17, CADPS, PIK3C2G), vascular structure and function (GNB3, CDON), and renal function (HAS2 and HAS2-AS1, SLIT3). Collectively, these findings suggest a role of educational attainment or SES in further dissection of the genetic architecture of BP.
  •  
2.
  • Feitosa, Mary F., et al. (författare)
  • Novel genetic associations for blood pressure identified via gene-alcohol interaction in up to 570K individuals across multiple ancestries
  • 2018
  • Ingår i: PLOS ONE. - : Public library science. - 1932-6203. ; 13:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Heavy alcohol consumption is an established risk factor for hypertension; the mechanism by which alcohol consumption impact blood pressure (BP) regulation remains unknown. We hypothesized that a genome-wide association study accounting for gene-alcohol consumption interaction for BP might identify additional BP loci and contribute to the understanding of alcohol-related BP regulation. We conducted a large two-stage investigation incorporating joint testing of main genetic effects and single nucleotide variant (SNV)-alcohol consumption interactions. In Stage 1, genome-wide discovery meta-analyses in approximate to 131 K individuals across several ancestry groups yielded 3,514 SNVs (245 loci) with suggestive evidence of association (P <1.0 x 10(-5)). In Stage 2, these SNVs were tested for independent external replication in individuals across multiple ancestries. We identified and replicated (at Bonferroni correction threshold) five novel BP loci (380 SNVs in 21 genes) and 49 previously reported BP loci (2,159 SNVs in 109 genes) in European ancestry, and in multi-ancestry meta-analyses (P < 5.0 x 10(-8)). For African ancestry samples, we detected 18 potentially novel BP loci (P< 5.0 x 10(-8)) in Stage 1 that warrant further replication. Additionally, correlated meta-analysis identified eight novel BP loci (11 genes). Several genes in these loci (e.g., PINX1, GATA4, BLK, FTO and GABBR2 have been previously reported to be associated with alcohol consumption. These findings provide insights into the role of alcohol consumption in the genetic architecture of hypertension.
  •  
3.
  • Kanoni, Stavroula, et al. (författare)
  • Implicating genes, pleiotropy, and sexual dimorphism at blood lipid loci through multi-ancestry meta-analysis.
  • 2022
  • Ingår i: Genome biology. - : Springer Science and Business Media LLC. - 1474-760X .- 1465-6906 .- 1474-7596. ; 23:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Genetic variants within nearly 1000 loci are known to contribute to modulation of blood lipid levels. However, the biological pathways underlying these associations are frequently unknown, limiting understanding of these findings and hindering downstream translational efforts such as drug target discovery.To expand our understanding of the underlying biological pathways and mechanisms controlling blood lipid levels, we leverage a large multi-ancestry meta-analysis (N=1,654,960) of blood lipids to prioritize putative causal genes for 2286 lipid associations using six gene prediction approaches. Using phenome-wide association (PheWAS) scans, we identify relationships of genetically predicted lipid levels to other diseases and conditions. We confirm known pleiotropic associations with cardiovascular phenotypes and determine novel associations, notably with cholelithiasis risk. We perform sex-stratified GWAS meta-analysis of lipid levels and show that 3-5% of autosomal lipid-associated loci demonstrate sex-biased effects. Finally, we report 21 novel lipid loci identified on the X chromosome. Many of the sex-biased autosomal and X chromosome lipid loci show pleiotropic associations with sex hormones, emphasizing the role of hormone regulation in lipid metabolism.Taken together, our findings provide insights into the biological mechanisms through which associated variants lead to altered lipid levels and potentially cardiovascular disease risk.
  •  
4.
  • Levy, Meira, et al. (författare)
  • Philanthropic conference-based requirements engineering in time of pandemic and beyond
  • 2023
  • Ingår i: Requirements Engineering. - : Springer Science and Business Media LLC. - 0947-3602 .- 1432-010X. ; 28, s. 213-227
  • Tidskriftsartikel (refereegranskat)abstract
    • As software engineering (SE) practitioners, we can help society by using our communities of experts to address a software need of a socially conscious organization. Doing so can benefit society in the locale of a SE conference and provide access to international experts for local organizations. Furthermore, established SE researchers as well as practitioners and students have the opportunity for a unique learning experience. While the SE community has already realized the importance of addressing human values and promoting social good objectives in software development, we are unaware of previous attempts to leverage SE conferences for this activity. Conferences present an opportunity to enjoy the assembly of SE practitioners, researchers, and students for the purpose of a philanthropic endeavor. Over the past four years of running a “Requirements Engineering for Social Good” event called RE Cares, co-located with the International Conference on Requirements Engineering, we worked with the stakeholders local to the conference venue. We selected stakeholders who would not necessarily have ready access to requirements engineering, software design, and development expertise otherwise, to build software targeting “good causes.” In the last two years, this event was altered to adapt to the constraints induced by COVID-19, moving to a hybrid mode and changing many of its practices accordingly. This paper summarizes and generalizes our experiences, discussing our lessons learned in the context of the pandemic and beyond and providing a framework for conducting similar social contribution in any SE conferences in general.
  •  
5.
  • Lin, Chen, et al. (författare)
  • Concomitant use of Ad5/35 chimeric oncolytic adenovirus with TRAIL gene and taxol produces synergistic cytotoxicity in gastric cancer cells
  • 2009
  • Ingår i: Cancer Letters. - : Elsevier BV. - 1872-7980 .- 0304-3835. ; 284:2, s. 141-148
  • Tidskriftsartikel (refereegranskat)abstract
    • Chimeric adenoviral vectors possessing fiber derived from human adenovirus subgroup B (Ad35) have been developed for their high infection efficiency in cell types which are refractory to adenovirus serotype 5 (Subgroup C) The present study constructed an E1B-deleted chimeric oncolytic adenovirus, SG235-TRAIL, which carries a human TRAIL gene expression cassette and whose fiber shaft and knob domains are from serotype AM. It was found that SG235-TRAIL preferentially replicated in gastric cancer cell lines, SGC-7901 and BGC-823 compared to in normal human fibroblast BJ cells. Also, when compared with a replication-deficient chimeric vector Ad5/35-TRAIL, SG235-TRAIL mediated a higher level of the transgene expression via viral replication in the cancer cells. Further, because of the more efficient cell-entry and infection, SG235-TRAIL induced stronger cell apoptosis than the Ad5 CRAD vector, ZD55-TRAIL In addition, SG235-TRAIL in combination with the chemotherapeutic drug, taxol, produced a synergistic cytotoxic effect in cancer cells in vitro without causing significant toxicity to normal cells. In the gastric tumor xenograft mouse model, intratumoral SG235-TRAIL injection produced a significant antitumor effect 14 days after treatment. Pathological examination demonstrated TRAIL expression and associated apoptosis in majority of SG235-TRAIL-treated tumor cells. These results suggest that SG235-TRAIL is a potential novel, efficient anti-cancer agent, and in combination with taxol, it would be even more useful with considerably low toxic side effects. (C) 2009 Elsevier Ireland Ltd. All rights reserved.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy