SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Fiebig Andreas) "

Sökning: WFRF:(Fiebig Andreas)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Kaiser, Stefan, 1968, et al. (författare)
  • White Paper: Broadband Multi-Carrier Based Air Interface (version 1.4)
  • 2002
  • Ingår i: Proceedings 7th Wireless World Research Forum Workshop, Eindhoven, the Netherlands.
  • Konferensbidrag (refereegranskat)abstract
    • The future success of the mobile communications revolution strongly depends on increasing the data rate and quality of service (QoS) available to the mobile user. This will enable value added services, which are not possible with current state of the art mobile wireless radio systems. While an increase in data rate, and maybe to some extent also QoS, could be achieved by combining techniques in the form of multi mode terminals (e.g. UMTS and wireless LAN), this has the disadvantage that for each new scenario another mode has to be added. The combination may also not be suitable for the mobility requirements of wireless radio systems. This paper proposes using a broadband multi-carrier based air interface. It also includes a discussion of the enabling technologies for multi-carrier mobile systems and the technology trends for future research. The multi-carrier technology offers the desired high data rates for the 4G mobile environments and also has advantages for spectral efficiency and low-cost implementation.
  •  
2.
  • Laj, Paolo, et al. (författare)
  • A global analysis of climate-relevant aerosol properties retrieved from the network of Global Atmosphere Watch (GAW) near-surface observatories
  • 2020
  • Ingår i: Atmospheric Measurement Techniques. - : Copernicus GmbH. - 1867-1381 .- 1867-8548. ; 13:8, s. 4353-4392
  • Tidskriftsartikel (refereegranskat)abstract
    • Aerosol particles are essential constituents of the Earth's atmosphere, impacting the earth radiation balance directly by scattering and absorbing solar radiation, and indirectly by acting as cloud condensation nuclei. In contrast to most greenhouse gases, aerosol particles have short atmospheric residence times, resulting in a highly heterogeneous distribution in space and time. There is a clear need to document this variability at regional scale through observations involving, in particular, the in situ near-surface segment of the atmospheric observation system. This paper will provide the widest effort so far to document variability of climate-relevant in situ aerosol properties (namely wavelength dependent particle light scattering and absorption coefficients, particle number concentration and particle number size distribution) from all sites connected to the Global Atmosphere Watch network. High-quality data from almost 90 stations worldwide have been collected and controlled for quality and are reported for a reference year in 2017, providing a very extended and robust view of the variability of these variables worldwide. The range of variability observed worldwide for light scattering and absorption coefficients, single-scattering albedo, and particle number concentration are presented together with preliminary information on their long-term trends and comparison with model simulation for the different stations. The scope of the present paper is also to provide the necessary suite of information, including data provision procedures, quality control and analysis, data policy, and usage of the ground-based aerosol measurement network. It delivers to users of the World Data Centre on Aerosol, the required confidence in data products in the form of a fully characterized value chain, including uncertainty estimation and requirements for contributing to the global climate monitoring system.
  •  
3.
  • Leinonen, Ville, et al. (författare)
  • Comparison of particle number size distribution trends in ground measurements and climate models
  • 2022
  • Ingår i: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 22:19, s. 12873-12905
  • Tidskriftsartikel (refereegranskat)abstract
    • Despite a large number of studies, out of all drivers of radiative forcing, the effect of aerosols has the largest uncertainty in global climate model radiative forcing estimates. There have been studies of aerosol optical properties in climate models, but the effects of particle number size distribution need a more thorough inspection. We investigated the trends and seasonality of particle number concentrations in nucleation, Aitken, and accumulation modes at 21 measurement sites in Europe and the Arctic. For 13 of those sites, with longer measurement time series, we compared the field observations with the results from five climate models, namely EC-Earth3, ECHAM-M7, ECHAM-SALSA, NorESM1.2, and UKESM1. This is the first extensive comparison of detailed aerosol size distribution trends between in situ observations from Europe and five earth system models (ESMs). We found that the trends of particle number concentrations were mostly consistent and decreasing in both measurements and models. However, for many sites, climate models showed weaker decreasing trends than the measurements. Seasonal variability in measured number concentrations, quantified by the ratio between maximum and minimum monthly number concentration, was typically stronger at northern measurement sites compared to other locations. Models had large differences in their seasonal representation, and they can be roughly divided into two categories: for EC-Earth and NorESM, the seasonal cycle was relatively similar for all sites, and for other models the pattern of seasonality varied between northern and southern sites. In addition, the variability in concentrations across sites varied between models, some having relatively similar concentrations for all sites, whereas others showed clear differences in concentrations between remote and urban sites. To conclude, although all of the model simulations had identical input data to describe anthropogenic mass emissions, trends in differently sized particles vary among the models due to assumptions in emission sizes and differences in how models treat size-dependent aerosol processes. The inter-model variability was largest in the accumulation mode, i.e. sizes which have implications for aerosol–cloud interactions. Our analysis also indicates that between models there is a large variation in efficiency of long-range transportation of aerosols to remote locations. The differences in model results are most likely due to the more complex effect of different processes instead of one specific feature (e.g. the representation of aerosol or emission size distributions). Hence, a more detailed characterization of microphysical processes and deposition processes affecting the long-range transport is needed to understand the model variability.
  •  
4.
  • Petzold, Andreas, et al. (författare)
  • Opinion : New directions in atmospheric research offered by research infrastructures combined with open and data-intensive science
  • 2024
  • Ingår i: Atmospheric Chemistry and Physics. - 1680-7316. ; 24:9, s. 5369-5388
  • Forskningsöversikt (refereegranskat)abstract
    • The acquisition and dissemination of essential information for understanding global biogeochemical interactions between the atmosphere and ecosystems and how climate-ecosystem feedback loops may change atmospheric composition in the future comprise a fundamental prerequisite for societal resilience in the face of climate change. In particular, the detection of trends and seasonality in the abundance of greenhouse gases and short-lived climate-Active atmospheric constituents is an important aspect of climate science. Therefore, easy and fast access to reliable, long-Term, and high-quality observational environmental data is recognised as fundamental to research and the development of environmental forecasting and assessment services. In our opinion article, we discuss the potential role that environmental research infrastructures in Europe (ENVRI RIs) can play in the context of an integrated global observation system. In particular, we focus on the role of the atmosphere-centred research infrastructures ACTRIS (Aerosol, Clouds and Trace Gases Research Infrastructure), IAGOS (In-service Aircraft for a Global Observing System), and ICOS (Integrated Carbon Observation System), also referred to as ATMO-RIs, with their capabilities for standardised collection and provision of long-Term and high-quality observational data, complemented by rich metadata. The ATMO-RIs provide data through open access and offer data interoperability across different research fields including all fields of environmental sciences and beyond. As a result of these capabilities in data collection and provision, we elaborate on the novel research opportunities in atmospheric sciences which arise from the combination of open-Access and interoperable observational data, tools, and technologies offered by data-intensive science and the emerging collaboration platform ENVRI-Hub, hosted by the European Open Science Cloud (EOSC).
  •  
5.
  • Platt, Stephen M., et al. (författare)
  • Atmospheric composition in the European Arctic and 30 years of the Zeppelin Observatory, Ny-Ålesund
  • 2022
  • Ingår i: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 22:5, s. 3321-3369
  • Tidskriftsartikel (refereegranskat)abstract
    • The Zeppelin Observatory (78.90∘ N, 11.88∘ E) is located on Zeppelin Mountain at 472 m a.s.l. on Spitsbergen, the largest island of the Svalbard archipelago. Established in 1989, the observatory is part of Ny-Ålesund Research Station and an important atmospheric measurement site, one of only a few in the high Arctic, and a part of several European and global monitoring programmes and research infrastructures, notably the European Monitoring and Evaluation Programme (EMEP); the Arctic Monitoring and Assessment Programme (AMAP); the Global Atmosphere Watch (GAW); the Aerosol, Clouds and Trace Gases Research Infrastructure (ACTRIS); the Advanced Global Atmospheric Gases Experiment (AGAGE) network; and the Integrated Carbon Observation System (ICOS). The observatory is jointly operated by the Norwegian Polar Institute (NPI), Stockholm University, and the Norwegian Institute for Air Research (NILU). Here we detail the establishment of the Zeppelin Observatory including historical measurements of atmospheric composition in the European Arctic leading to its construction. We present a history of the measurements at the observatory and review the current state of the European Arctic atmosphere, including results from trends in greenhouse gases, chlorofluorocarbons (CFCs) and hydrochlorofluorocarbons (HCFCs), other traces gases, persistent organic pollutants (POPs) and heavy metals, aerosols and Arctic haze, and atmospheric transport phenomena, and provide an outline of future research directions.
  •  
6.
  • Salmela, Elina, et al. (författare)
  • Genome-wide analysis of single nucleotide polymorphisms uncovers population structure in Northern Europe
  • 2008
  • Ingår i: PLOS ONE. - San Fransisco : Public library of science. - 1932-6203. ; 3:10
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Genome-wide data provide a powerful tool for inferring patterns of genetic variation and structure of human populations.Principal Findings: In this study, we analysed almost 250,000 SNPs from a total of 945 samples from Eastern and Western Finland, Sweden, Northern Germany and Great Britain complemented with HapMap data. Small but statistically significant differences were observed between the European populations (F(ST) = 0.0040, p < 10(-4)), also between Eastern and Western Finland (F(ST) = 0.0032, p < 10(-3)). The latter indicated the existence of a relatively strong autosomal substructure within the country, similar to that observed earlier with smaller numbers of markers. The Germans and British were less differentiated than the Swedes, Western Finns and especially the Eastern Finns who also showed other signs of genetic drift. This is likely caused by the later founding of the northern populations, together with subsequent founder and bottleneck effects, and a smaller population size. Furthermore, our data suggest a small eastern contribution among the Finns, consistent with the historical and linguistic background of the population.Significance: Our results warn against a priori assumptions of homogeneity among Finns and other seemingly isolated populations. Thus, in association studies in such populations, additional caution for population structure may be necessary. Our results illustrate that population history is often important for patterns of genetic variation, and that the analysis of hundreds of thousands of SNPs provides high resolution also for population genetics.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy