SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Fridjonsson Olafur) "

Sökning: WFRF:(Fridjonsson Olafur)

  • Resultat 1-10 av 19
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Aevarsson, Arnthór, et al. (författare)
  • Going to extremes - a metagenomic journey into the dark matter of life
  • 2021
  • Ingår i: FEMS Microbiology Letters. - : Oxford University Press (OUP). - 1574-6968. ; 368:12
  • Forskningsöversikt (refereegranskat)abstract
    • The Virus-X-Viral Metagenomics for Innovation Value-project was a scientific expedition to explore and exploit uncharted territory of genetic diversity in extreme natural environments such as geothermal hot springs and deep-sea ocean ecosystems. Specifically, the project was set to analyse and exploit viral metagenomes with the ultimate goal of developing new gene products with high innovation value for applications in biotechnology, pharmaceutical, medical, and the life science sectors. Viral gene pool analysis is also essential to obtain fundamental insight into ecosystem dynamics and to investigate how viruses influence the evolution of microbes and multicellular organisms. The Virus-X Consortium, established in 2016, included experts from eight European countries. The unique approach based on high throughput bioinformatics technologies combined with structural and functional studies resulted in the development of a biodiscovery pipeline of significant capacity and scale. The activities within the Virus-X consortium cover the entire range from bioprospecting and methods development in bioinformatics to protein production and characterisation, with the final goal of translating our results into new products for the bioeconomy. The significant impact the consortium made in all of these areas was possible due to the successful cooperation between expert teams that worked together to solve a complex scientific problem using state-of-the-art technologies as well as developing novel tools to explore the virosphere, widely considered as the last great frontier of life.
  •  
2.
  • Ahlqvist, Josefin, et al. (författare)
  • Crystal structure and initial characterization of a novel archaeal-like Holliday junction-resolving enzyme from Thermus thermophilus phage Tth15-6
  • 2022
  • Ingår i: Acta crystallographica. Section D, Structural biology. - 2059-7983. ; 78:Pt 2, s. 212-227
  • Tidskriftsartikel (refereegranskat)abstract
    • This study describes the production, characterization and structure determination of a novel Holliday junction-resolving enzyme. The enzyme, termed Hjc_15-6, is encoded in the genome of phage Tth15-6, which infects Thermus thermophilus. Hjc_15-6 was heterologously produced in Escherichia coli and high yields of soluble and biologically active recombinant enzyme were obtained in both complex and defined media. Amino-acid sequence and structure comparison suggested that the enzyme belongs to a group of enzymes classified as archaeal Holliday junction-resolving enzymes, which are typically divalent metal ion-binding dimers that are able to cleave X-shaped dsDNA-Holliday junctions (Hjs). The crystal structure of Hjc_15-6 was determined to 2.5 Å resolution using the selenomethionine single-wavelength anomalous dispersion method. To our knowledge, this is the first crystal structure of an Hj-resolving enzyme originating from a bacteriophage that can be classified as an archaeal type of Hj-resolving enzyme. As such, it represents a new fold for Hj-resolving enzymes from phages. Characterization of the structure of Hjc_15-6 suggests that it may form a dimer, or even a homodimer of dimers, and activity studies show endonuclease activity towards Hjs. Furthermore, based on sequence analysis it is proposed that Hjc_15-6 has a three-part catalytic motif corresponding to E-SD-EVK, and this motif may be common among other Hj-resolving enzymes originating from thermophilic bacteriophages.
  •  
3.
  • Ahlqvist, Josefin, et al. (författare)
  • Crystal structure of DNA polymerase I from Thermus phage G20c
  • 2022
  • Ingår i: Acta crystallographica. Section D, Structural biology. - 2059-7983. ; 78:Pt 11, s. 1384-1398
  • Tidskriftsartikel (refereegranskat)abstract
    • This study describes the structure of DNA polymerase I from Thermus phage G20c, termed PolI_G20c. This is the first structure of a DNA polymerase originating from a group of related thermophilic bacteriophages infecting Thermus thermophilus, including phages G20c, TSP4, P74-26, P23-45 and phiFA and the novel phage Tth15-6. Sequence and structural analysis of PolI_G20c revealed a 3'-5' exonuclease domain and a DNA polymerase domain, and activity screening confirmed that both domains were functional. No functional 5'-3' exonuclease domain was present. Structural analysis also revealed a novel specific structure motif, here termed SβαR, that was not previously identified in any polymerase belonging to the DNA polymerases I (or the DNA polymerase A family). The SβαR motif did not show any homology to the sequences or structures of known DNA polymerases. The exception was the sequence conservation of the residues in this motif in putative DNA polymerases encoded in the genomes of a group of thermophilic phages related to Thermus phage G20c. The structure of PolI_G20c was determined with the aid of another structure that was determined in parallel and was used as a model for molecular replacement. This other structure was of a 3'-5' exonuclease termed ExnV1. The cloned and expressed gene encoding ExnV1 was isolated from a thermophilic virus metagenome that was collected from several hot springs in Iceland. The structure of ExnV1, which contains the novel SβαR motif, was first determined to 2.19 Å resolution. With these data at hand, the structure of PolI_G20c was determined to 2.97 Å resolution. The structures of PolI_G20c and ExnV1 are most similar to those of the Klenow fragment of DNA polymerase I (PDB entry 2kzz) from Escherichia coli, DNA polymerase I from Geobacillus stearothermophilus (PDB entry 1knc) and Taq polymerase (PDB entry 1bgx) from Thermus aquaticus.
  •  
4.
  • Allahgholi, Leila, et al. (författare)
  • Composition analysis and minimal treatments to solubilize polysaccharides from the brown seaweed Laminaria digitata for microbial growth of thermophiles
  • 2020
  • Ingår i: Journal of Applied Phycology. - : Springer Science and Business Media LLC. - 0921-8971 .- 1573-5176. ; 32:3, s. 1933-1947
  • Tidskriftsartikel (refereegranskat)abstract
    • Brown macroalgae (Phaeophyta) hold high potential as feedstock for biorefineries due to high biomass productivity and carbohydrate content. They are, however, a challenging, unconventional feedstock for microbial refining and several processing problems need to be solved to make them a viable option. Pre-treatment is necessary to enhance accessibility and solubility of the biomass components but should be minimal and mild to assure sustainable and cost-effective processing. Here, two routes to pre-treatLaminaria digitata to release polysaccharides were investigated: hot water pre-treatment by autoclaving (121 °C, 20 min or 60 min) and a two-step extraction with mild acid (0.1 M HCl) followed by alkaline treatment. Hot water pre-treatment resulted in partial extraction of a mixture of polysaccharides consisting of alginate, fucoidan and laminarin. After mild acid pre-treatment, alginate was found in the remaining insoluble residues and was extracted in a second step via alkaline treatment using Na2CO3 (0.15 M) at 80 °C and CaCl2 (10%) for the precipitation. In addition to carbohydrates, a fraction of other components such as proteins, phenolic compounds, minerals and trace elements was detected in the extracts. Cultivation of the thermophilic bacterial strains Rhodothermus marinus DSM 16675 and Bacillus methanolicus MGA3 (ATCC 53907) in media supplemented with the respective extracts resulted in growth of both strains, indicating that they were able to utilize the available carbon source for growth. R. marinus displayed the highest cell density in the medium containing the extract from acid pre-treatment, whereas B. methanolicus growth was highest with the extract from hot water pre-treatment.
  •  
5.
  • Allahgholi, Leila, et al. (författare)
  • Exploring a novel β-1,3-glucanosyltransglycosylase, MlGH17B, from a marine Muricauda lutaonensis strain for modification of laminari-oligosaccharides
  • Ingår i: Glycobiology. - 1460-2423.
  • Tidskriftsartikel (refereegranskat)abstract
    • The marine environment, contains plentiful renewable resources, e.g. macroalgae with unique polysaccharides, motivating search for enzymes from marine microorganisms to explore conversion possibilities of the polysaccharides. In this study, the first GH17 glucanosyltransglycosylase, MlGH17B, from a marine bacterium (Muricauda lutaonensis), was characterized. The enzyme was moderately thermostable with Tm at 64.4 °C and 73.2 °C, but an activity optimum at 20 °C, indicating temperature sensitive active site interactions. MlGH17B uses β-1,3 laminari-oligosaccharides with a degree of polymerization (DP) of 4 or higher as donors. Two glucose moieties (bound in the aglycone +1 and + 2 subsites) are cleaved off from the reducing end of the donor while the remaining part (bound in the glycone subsites) is transferred to an incoming β-1,3 glucan acceptor, making a β-1,6-linkage, thereby synthesizing branched or kinked oligosaccharides. Synthesized oligosaccharides up to DP26 were detected by mass spectrometry analysis, showing that repeated transfer reactions occurred, resulting in several β-1,6-linked branches. The modelled structure revealed an active site comprising five subsites: three glycone (-3, -2 and - 1) and two aglycone (+1 and + 2) subsites, with significant conservation of substrate interactions compared to the only crystallized 1,3-β-glucanosyltransferase from GH17 (RmBgt17A from the compost thriving fungus Rhizomucor miehei), suggesting a common catalytic mechanism, despite different phylogenetic origin, growth environment, and natural substrate. Both enzymes lacked the subdomain extending the aglycone subsites, found in GH17 endo-β-glucanases from plants, but this extension was also missing in bacterial endoglucanases (modelled here), showing that this feature does not distinguish transglycosylation from hydrolysis, but may rather relate to phylogeny.
  •  
6.
  • Ara, Kazi Zubaida Gulshan, et al. (författare)
  • Characterization and diversity of the complete set of GH family 3 enzymes from Rhodothermus marinus DSM 4253
  • 2020
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 10
  • Tidskriftsartikel (refereegranskat)abstract
    • The genome of Rhodothermus marinus DSM 4253 encodes six glycoside hydrolases (GH) classified under GH family 3 (GH3): RmBgl3A, RmBgl3B, RmBgl3C, RmXyl3A, RmXyl3B and RmNag3. The biochemical function, modelled 3D-structure, gene cluster and evolutionary relationships of each of these enzymes were studied. The six enzymes were clustered into three major evolutionary lineages of GH3: β-N-acetyl-glucosaminidases, β-1,4-glucosidases/β-xylosidases and macrolide β-glucosidases. The RmNag3 with additional β-lactamase domain clustered with the deepest rooted GH3-lineage of β-N-acetyl-glucosaminidases and was active on acetyl-chitooligosaccharides. RmBgl3B displayed β-1,4-glucosidase activity and was the only representative of the lineage clustered with macrolide β-glucosidases from Actinomycetes. The β-xylosidases, RmXyl3A and RmXyl3B, and the β-glucosidases RmBgl3A and RmBgl3C clustered within the major β-glucosidases/β-xylosidases evolutionary lineage. RmXyl3A and RmXyl3B showed β-xylosidase activity with different specificities for para-nitrophenyl (pNP)-linked substrates and xylooligosaccharides. RmBgl3A displayed β-1,4-glucosidase/β-xylosidase activity while RmBgl3C was active on pNP-β-Glc and β-1,3-1,4-linked glucosyl disaccharides. Putative polysaccharide utilization gene clusters were also investigated for both R. marinus DSM 4253 and DSM 4252T (homolog strain). The analysis showed that in the homolog strain DSM 4252T Rmar_1080 (RmXyl3A) and Rmar_1081 (RmXyl3B) are parts of a putative polysaccharide utilization locus (PUL) for xylan utilization.
  •  
7.
  • Daugbjerg Christensen, Monica, et al. (författare)
  • Cloning and Characterization of a Novel N-Acetyl-D-galactosamine-4-O-sulfate Sulfatase, SulA1, from a Marine Arthrobacter Strain
  • 2024
  • Ingår i: Marine Drugs. - 1660-3397. ; 22:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Sulfation is gaining increased interest due to the role of sulfate in the bioactivity of many polysaccharides of marine origin. Hence, sulfatases, enzymes that control the degree of sulfation, are being more extensively researched. In this work, a novel sulfatase (SulA1) encoded by the gene sulA1 was characterized. The sulA1-gene is located upstream of a chondroitin lyase encoding gene in the genome of the marine Arthrobacter strain (MAT3885). The sulfatase was produced in Escherichia coli. Based on the primary sequence, the enzyme is classified under sulfatase family 1 and the two catalytic residues typical of the sulfatase 1 family—Cys57 (post-translationally modified to formyl glycine for function) and His190—were conserved. The enzyme showed increased activity, but not improved stability, in the presence of Ca2+, and conserved residues for Ca2+ binding were identified (Asp17, Asp18, Asp277, and Asn278) in a structural model of the enzyme. The temperature and pH activity profiles (screened using p-nitrocatechol sulfate) were narrow, with an activity optimum at 40–50 °C and a pH optimum at pH 5.5. The Tm was significantly higher (67 °C) than the activity optimum. Desulfation activity was not detected on polymeric substrates, but was found on GalNAc4S, which is a sulfated monomer in the repeated disaccharide unit (GlcA–GalNAc4S) of, e.g., chondroitin sulfate A. The position of the sulA1 gene upstream of a chondroitin lyase gene and combined with the activity on GalNAc4S suggests that there is an involvement of the enzyme in the chondroitin-degrading cascade reaction, which specifically removes sulfate from monomeric GalNAc4S from chondroitin sulfate degradation products.
  •  
8.
  • Gulshan Kazi, Zubaida, et al. (författare)
  • A CGTase with high coupling activity using γ-cyclodextrin isolated from a novel strain clustering under the genus Carboxydocella.
  • 2015
  • Ingår i: Glycobiology. - : Oxford University Press (OUP). - 1460-2423 .- 0959-6658. ; 25:5, s. 514-523
  • Tidskriftsartikel (refereegranskat)abstract
    • Cyclodextrin glucanotransferases (CGTases; EC 2.4.1.19) have mainly been characterized for their ability to produce cyclodextrins (CDs) from starch in an intramolecular transglycosylation reaction (cyclization). However, this class of enzymes can also catalyze intermolecular transglycosylation via disproportionation or coupling reactions onto a wide array of acceptors and could therefore be valuable as a tool for glycosylation. In this paper, we report the gene isolation, via the CODEHOP-strategy, expression and characterization of a novel CGTase (CspCGT13) from a Carboxydocella sp. This enzyme is the first glycoside hydrolase isolated from the genus, indicating starch degradation via cyclodextrin production in the Carboxydocella strain. The fundamental reactivities of this novel CGTase are characterized and compared to two commercial CGTases, assayed under identical condition, in order to facilitate interpretation of the results. The comparison showed that the enzyme, CspCGT13, displayed high coupling activity using γ-CD as donor, despite preferentially forming α and β-CD in the cyclization reaction using wheat starch as substrate. Comparison of subsite conservation within previously characterized CGTases showed significant sequence variation in subsite -3 and -7, which may be important for the coupling activity.
  •  
9.
  • Hreggvidsson, Gudmundur O, et al. (författare)
  • Biocatalytic refining of polysaccharides from brown seaweeds
  • 2020. - 1
  • Ingår i: Sustainable Seaweed Technologies : Cultivation, Biorefinery and Applications - Cultivation, Biorefinery and Applications. - 9780128179437 - 9780128179444 ; , s. 447-504
  • Bokkapitel (refereegranskat)abstract
    • Brown macroalgae constitute 40% of the global production of seaweed, corresponding to approximately 10 million tonnes annually. Traditionally, seaweeds have been the source of hydrocolloids, food, and feed products. Due to possibilities for large-scale farming, brown macroalgae are a biomass with considerable potential for increased utilization. The main constituent polysaccharides, being alginate, cellulose, laminaran, and fucoidan, are the components of greatest importance for biorefinery usage. The polysaccharides can be extracted and applied for their physical or bioactive properties or used as a carbon source for microbial conversions to biofuels and commodity chemicals. The structural complexity and heterogeneous sugar composition of the polysaccharides make them a challenging biorefinery feedstock. These challenges can be overcome by the increasingly innovative biocatalytic tools, enzymes and microbes, that are being developed and that can be expected to open new opportunities and expand the product portfolio. However, there are still knowledge gaps, and further understanding is required on the molecular level of these interesting polymers, the tools, the refining possibilities, as well as transforming this knowledge to innovations—processes and products.
  •  
10.
  • Kobayashi, Yumi, et al. (författare)
  • Life-cycle assessment of yeast-based single-cell protein production with oat processing side-stream
  • 2023
  • Ingår i: Science of the Total Environment. - : Elsevier BV. - 1879-1026 .- 0048-9697. ; 873
  • Tidskriftsartikel (refereegranskat)abstract
    • Production of fish meal and plant-based feed proteins continues to increase to meet the growing demand for seafood, leading to impacts on marine and terrestrial ecosystems. Microbial proteins such as single-cell proteins (SCPs) have been introduced as feed alternatives since they can replace current fish feed ingredients, e.g., soybean, which are associated with negative environmental impacts. Microbial protein production also enables utilization of grain processing side-streams as feedstock sources. This study assesses the environmental impacts of yeast-based SCP using oat side-stream as feedstock (OS-SCP). Life-cycle assessment with a cradle-to-gate approach was used to quantify global warming, freshwater eutrophication, marine eutrophication, terrestrial acidification, land use, and water consumption of OS-SCP production in Finland. Dried and wet side-streams of oat were compared with each other to identify differences in energy consumption and transportation effects. Sensitivity analysis was performed to examine the difference in impacts at various locations and fermentation times. Benchmarking was used to evaluate the environmental impacts of OS-SCP and other feed products, including both conventional and novel protein products. Results highlight the importance of energy sources in quantifying the environmental performance of OS-SCP production. OS-SCP produced with dried side-streams resulted in higher global warming (16.3 %) and water consumption (7.5 %) than OS-SCP produced from wet side-streams, reflecting the energy and water requirements for the drying process. Compared with conventional products, such as soy protein concentrates, OS-SCP resulted in 61 % less land use, while exacerbating the environmental impacts in all the other categories. OS-SCP had more impact on global warming (205-754 %), water consumption (166-1401 %), freshwater eutrophication (118-333 %), and terrestrial acidification (85-340 %) than other novel products, including yeast protein concentrate, methanotrophic bacterial SCP, and insect meal, while lowering global warming (11 %) and freshwater eutrophication (20 %) compared with dry microalgae biomass.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 19
Typ av publikation
tidskriftsartikel (15)
bokkapitel (2)
konferensbidrag (1)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (19)
Författare/redaktör
Fridjonsson, Olafur ... (17)
Nordberg Karlsson, E ... (13)
Hreggvidsson, Gudmun ... (9)
Jasilionis, Andrius (5)
Håkansson, Maria (3)
Aevarsson, Arnthór (3)
visa fler...
Ahlqvist, Josefin (3)
Al-Karadaghi, Salam (3)
Gudmundsson, Hördur (3)
Aasen, Inga Marie (2)
Holst, Olle (2)
Kaczorowska, Anna-Ka ... (2)
Dabrowski, Slawomir (2)
Glomsaker, Eirin (2)
Jónsdóttir, Lilja Bj ... (2)
Kaczorowski, Tadeusz (2)
Svensson, Anders (1)
Turner, Charlotta (1)
Walse, Björn (1)
Wang, Lei (1)
Adlercreutz, Patrick (1)
Adalsteinsson, Björn ... (1)
Altenbuchner, Joseph (1)
Arsin, Hasan (1)
Átlasson, Úlfur Áugú ... (1)
Brandt, David (1)
Cichowicz-Cieślak, M ... (1)
Cornish, Katy A S (1)
Courtin, Jérémy (1)
Dahle, Håkon (1)
Djeffane, Samia (1)
Dorawa, Sebastian (1)
Dusaucy, Julia (1)
Enault, Francois (1)
Fedøy, Anita-Elin (1)
Freitag-Pohl, Stefan ... (1)
Galiez, Clovis (1)
Guérin, Mickael (1)
Gundesø, Sigurd E (1)
Gudmundsdóttir, Elis ... (1)
Henke, Christian (1)
Helleux, Alexandra (1)
Henriksen, Jørn Remi (1)
Hjörleifdóttir, Sigr ... (1)
Jochheim, Annika (1)
Jónsdóttir, Ilmur (1)
Jurczak-Kurek, Agata (1)
Kalinowski, Jörn (1)
Kozlowski, Lukasz P (1)
Krupovic, Mart (1)
visa färre...
Lärosäte
Lunds universitet (19)
Språk
Engelska (19)
Forskningsämne (UKÄ/SCB)
Teknik (13)
Naturvetenskap (8)
Lantbruksvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy