SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Fritschi Sarah K) "

Sökning: WFRF:(Fritschi Sarah K)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Dixon-Suen, Suzanne C, et al. (författare)
  • Physical activity, sedentary time and breast cancer risk : a Mendelian randomisation study
  • 2022
  • Ingår i: British Journal of Sports Medicine. - : BMJ Publishing Group Ltd. - 0306-3674 .- 1473-0480. ; 56:20, s. 1157-1170
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVES: Physical inactivity and sedentary behaviour are associated with higher breast cancer risk in observational studies, but ascribing causality is difficult. Mendelian randomisation (MR) assesses causality by simulating randomised trial groups using genotype. We assessed whether lifelong physical activity or sedentary time, assessed using genotype, may be causally associated with breast cancer risk overall, pre/post-menopause, and by case-groups defined by tumour characteristics.METHODS: We performed two-sample inverse-variance-weighted MR using individual-level Breast Cancer Association Consortium case-control data from 130 957 European-ancestry women (69 838 invasive cases), and published UK Biobank data (n=91 105-377 234). Genetic instruments were single nucleotide polymorphisms (SNPs) associated in UK Biobank with wrist-worn accelerometer-measured overall physical activity (nsnps=5) or sedentary time (nsnps=6), or accelerometer-measured (nsnps=1) or self-reported (nsnps=5) vigorous physical activity.RESULTS: Greater genetically-predicted overall activity was associated with lower breast cancer overall risk (OR=0.59; 95% confidence interval (CI) 0.42 to 0.83 per-standard deviation (SD;~8 milligravities acceleration)) and for most case-groups. Genetically-predicted vigorous activity was associated with lower risk of pre/perimenopausal breast cancer (OR=0.62; 95% CI 0.45 to 0.87,≥3 vs. 0 self-reported days/week), with consistent estimates for most case-groups. Greater genetically-predicted sedentary time was associated with higher hormone-receptor-negative tumour risk (OR=1.77; 95% CI 1.07 to 2.92 per-SD (~7% time spent sedentary)), with elevated estimates for most case-groups. Results were robust to sensitivity analyses examining pleiotropy (including weighted-median-MR, MR-Egger).CONCLUSION: Our study provides strong evidence that greater overall physical activity, greater vigorous activity, and lower sedentary time are likely to reduce breast cancer risk. More widespread adoption of active lifestyles may reduce the burden from the most common cancer in women.
  •  
2.
  • Fritschi, Sarah K., et al. (författare)
  • A beta seeds resist inactivation by formaldehyde
  • 2014
  • Ingår i: Acta Neuropathologica. - : Springer Verlag (Germany). - 0001-6322 .- 1432-0533. ; 128:4, s. 477-484
  • Tidskriftsartikel (refereegranskat)abstract
    • Cerebral beta-amyloidosis can be exogenously induced by the intracerebral injection of brain extracts containing aggregated beta-amyloid (A beta) into young, pre-depositing A beta precursor protein- (APP) transgenic mice. Previous work has shown that the induction involves a prion-like seeding mechanism in which the seeding agent is aggregated A beta itself. Here we report that the beta-amyloid-inducing activity of Alzheimers disease (AD) brain tissue or aged APP-transgenic mouse brain tissue is preserved, albeit with reduced efficacy, after formaldehyde fixation. Moreover, spectral analysis with amyloid conformation-sensitive luminescent conjugated oligothiophene dyes reveals that the strain-like properties of aggregated A beta are maintained in fixed tissues. The resistance of A beta seeds to inactivation and structural modification by formaldehyde underscores their remarkable durability, which in turn may contribute to their persistence and spread within the body. The present findings can be exploited to establish the relationship between the molecular structure of A beta aggregates and the variable clinical features and disease progression of AD even in archived, formalin-fixed autopsy material.
  •  
3.
  • Fritschi, Sarah K, et al. (författare)
  • Highly potent soluble amyloid-β seeds in human Alzheimer brain but not cerebrospinal fluid.
  • 2014
  • Ingår i: Brain : a journal of neurology. - : Oxford University Press (OUP). - 1460-2156. ; 137:11, s. 2909-2915
  • Tidskriftsartikel (refereegranskat)abstract
    • The soluble fraction of brain samples from patients with Alzheimer's disease contains highly biologically active amyloid-β seeds. In this study, we sought to assess the potency of soluble amyloid-β seeds derived from the brain and cerebrospinal fluid. Soluble Alzheimer's disease brain extracts were serially diluted and then injected into the hippocampus of young, APP transgenic mice. Eight months later, seeded amyloid-β deposition was evident even when the hippocampus received subattomole amounts of brain-derived amyloid-β. In contrast, cerebrospinal fluid from patients with Alzheimer's disease, which contained more than 10-fold higher levels of amyloid-β peptide than the most concentrated soluble brain extracts, did not induce detectable seeding activity in vivo. Similarly, cerebrospinal fluid from aged APP-transgenic donor mice failed to induce cerebral amyloid-β deposition. In comparison to the soluble brain fraction, cerebrospinal fluid largely lacked N-terminally truncated amyloid-β species and exhibited smaller amyloid-β-positive particles, features that may contribute to the lack of in vivo seeding by cerebrospinal fluid. Interestingly, the same cerebrospinal fluid showed at least some seeding activity in an in vitro assay. The present results indicate that the biological seeding activity of soluble amyloid-β species is orders of magnitude greater in brain extracts than in the cerebrospinal fluid.
  •  
4.
  • Wegenast-Braun, Bettina M., et al. (författare)
  • Spectral Discrimination of Cerebral Amyloid Lesions after Peripheral Application of Luminescent Conjugated Oligothiophenes
  • 2012
  • Ingår i: American Journal of Pathology. - : Elsevier. - 0002-9440 .- 1525-2191. ; 181:6, s. 1953-1960
  • Tidskriftsartikel (refereegranskat)abstract
    • In vivo imaging of pathological protein aggregates provides essential knowledge of the kinetics and implications of these lesions in the progression of proteopathies, such as Alzheimer disease. Luminescent conjugated oligothiophenes are amyloid-specific ligands that bind and spectrally distinguish different types of amyloid aggregates. Herein, we report that heptamer formyl thiophene acetic acid (hFTAA) passes the blood-brain barrier after systemic administration and specifically binds to extracellular beta-amyloid deposits in the brain parenchyma (A beta plaques) and in the vasculature (cerebral beta-amyloid angiopathy) of beta-amyloid precursor protein transgenic APP23 mice. Moreover, peripheral application of hFIAA also stained intracellular lesions of hyperphosphorylated Tau protein in P301S Tau transgenic mice. Spectral profiling of all three amyloid types was acquired ex vivo using two-photon excitation. hFTAA revealed a distinct shift in its emission spectra when bound to A beta plaques versus Tau lesions. Furthermore, a spectral shift was observed for A beta plaques versus cerebral beta-amyloid angiopathy, indicating that different amyloid types and structural variances of a specific amyloid type can be distinguished. In conclusion, by adding spectral signatures to amyloid lesions, our results pave the way for a new area of in vivo amyloid imaging, allowing in vivo differentiation of amyloid (sub)types and monitoring changes of their structure/composition over time. (Am J Pathol 2012, 181: 1953-1960 http://dx.doi.org/10.1016/j.ajpath.2012.08.031)
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy