SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Geerts Dirk) "

Sökning: WFRF:(Geerts Dirk)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Borsics, Tamas, et al. (författare)
  • Subcellular distribution and expression of prenylated Rab acceptor 1 domain family, member 2 (PRAF2) in malignant glioma : Influence on cell survival and migration
  • 2010
  • Ingår i: Cancer Science. - : Wiley. - 1347-9032 .- 1349-7006. ; 101:7, s. 1624-1631
  • Tidskriftsartikel (refereegranskat)abstract
    • Our previous studies revealed that the expression of the 19-kDa protein prenylated Rab acceptor 1 domain family, member 2 (PRAF2) is elevated in cancer tissues of the breast, colon, lung, and ovary, when compared to noncancerous tissues of paired samples. PRAF2 mRNA expression also correlated with several genetic and clinical features and is a candidate prognostic marker in the pediatric cancer neuroblastoma. The PRAF2-related proteins, PRAF1 and PRAF3, play multiple roles in cellular processes, including endo/exocytic vesicle trafficking and glutamate uptake. PRAF2 shares a high sequence homology with these family members, but its function remains unknown. In this study, we examined PRAF2 mRNA and protein expression in 20 different human cancer types using Affymetrix microarray and human tissue microarray (TMA) analyses, respectively. In addition, we investigated the subcellular distribution of PRAF2 by immunofluorescence microscopy and cell fractionation studies. PRAF2 mRNA and protein expression was elevated in several cancer tissues with highest levels in malignant glioma. At the molecular level, we detected native PRAF2 in small, vesicle-like structures throughout the cytoplasm as well as in and around cell nuclei of U-87 malignant glioma cells. We further found that monomeric and dimeric forms of PRAF2 are associated with different cell compartments, suggesting possible functional differences. Importantly, PRAF2 down-regulation by RNA interference significantly reduced the cell viability, migration, and invasiveness of U-87 cells. This study shows that PRAF2 expression is elevated in various tumors with exceptionally high expression in malignant gliomas, and PRAF2 therefore presents a candidate molecular target for therapeutic intervention. (Cancer Sci 2010).
  •  
2.
  • Haug, Bjørn Helge, et al. (författare)
  • MYCN-regulated miRNA-92 inhibits secretion of the tumor suppressor DICKKOPF-3 (DKK3) in neuroblastoma.
  • 2011
  • Ingår i: Carcinogenesis. - : Oxford University Press (OUP). - 1460-2180 .- 0143-3334. ; 32:7, s. 1005-12
  • Tidskriftsartikel (refereegranskat)abstract
    • The MYCN oncogene is frequently amplified in neuroblastoma. It is one of the most consistent markers of bad prognosis for this disease. Dickkopf-3 (DKK3) is a secreted protein of the DKK family of Wnt regulators. It functions as a tumor suppressor in a range of cancers, including neuroblastoma. MYCN was recently found to downregulate DKK3 mRNA. In this study, we show that MYCN knockdown in MYCN-amplified (MNA) neuroblastoma cell lines increases secretion of endogenous DKK3 to the culture media. MicroRNAs (miRNAs) are ∼20 nt long single-stranded RNA molecules that downregulate messenger RNAs by targeting the 3' untranslated region (3'UTR). Many miRNAs regulate genes involved in the pathogenesis of cancer and are extensively deregulated in different tumors. Using miRNA target prediction software, we found several MYCN-regulated miRNAs that could target the 3'UTR sequence of DKK3, including mir-92a, mir-92b and let-7e. Luciferase expression from a reporter vector containing the DKK3-3'UTR was decreased when this construct was cotransfected with mir-92a, mir-92b or let-7e in HEK293 cells. Mutation of the mir-92 seed sequence in the 3'UTR completely rescued the observed decrease in reporter expression when cotransfected with mir-92a and mir-92b. Antagomir and miRNA-mimic transfections in neuroblastoma cell lines confirmed that DKK3 secretion to the culture media is regulated by mir-92. Consistent with reports from other cancers, we found DKK3 to be expressed in the endothelium of primary neuroblastoma samples and to be absent in tumors with MYCN amplification. Our data demonstrate that MYCN-regulated miRNAs are able to modulate the expression of the tumor suppressor DKK3 in neuroblastoma.
  •  
3.
  • Tannous, Bakhos A., et al. (författare)
  • Effects of the Selective MPS1 Inhibitor MPS1-IN-3 on Glioblastoma Sensitivity to Antimitotic Drugs
  • 2013
  • Ingår i: Journal of the National Cancer Institute. - : Oxford University Press. - 0027-8874 .- 1460-2105. ; 105:17, s. 1322-1331
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Glioblastomas exhibit a high level of chemotherapeutic resistance, including to the antimitotic agents vincristine and taxol. During the mitotic agent-induced arrest, glioblastoma cells are able to perform damage-control and self-repair to continue proliferation. Monopolar spindle 1 (MPS1/TTK) is a checkpoint kinase and a gatekeeper of the mitotic arrest.Methods We used glioblastoma cells to determine the expression of MPS1 and to determine the effects of MPS1 inhibition on mitotic errors and cell viability in combination with vincristine and taxol. The effect of MPS1 inhibition was assessed in different orthotopic glioblastoma mouse models (n = 3-7 mice/group). MPS1 expression levels were examined in relation to patient survival.Results Using publicly available gene expression data, we determined that MPS1 overexpression corresponds positively with tumor grade and negatively with patient survival (two-sided t test, P < .001). Patients with high MPS1 expression (n = 203) had a median and mean survival of 487 and 913 days (95% confidence intervals [CI] = 751 to 1075), respectively, and a 2-year survival rate of 35%, whereas patients with intermediate MPS1 expression (n = 140) had a median and mean survival of 858 and 1183 days (95% CI = 1177 to 1189), respectively, and a 2-year survival rate of 56%. We demonstrate that MPS1 inhibition by RNAi results in sensitization to antimitotic agents. We developed a selective small-molecule inhibitor of MPS1, MPS1-IN-3, which caused mitotic aberrancies in glioblastoma cells and, in combination with vincristine, induced mitotic checkpoint override, increased aneuploidy, and augmented cell death. MPS1-IN-3 sensitizes glioblastoma cells to vincristine in orthotopic mouse models (two-sided log-rank test, P < .01), resulting in prolonged survival without toxicity.Conclusions Our results collectively demonstrate that MPS1, a putative therapeutic target in glioblastoma, can be selectively inhibited by MPS1-IN-3 sensitizing glioblastoma cells to antimitotic drugs.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy