SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Genestreti K.) "

Sökning: WFRF:(Genestreti K.)

  • Resultat 1-10 av 18
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Nakamura, R., et al. (författare)
  • Transient, small-scale field-aligned currents in the plasma sheet boundary layer during storm time substorms
  • 2016
  • Ingår i: Geophysical Research Letters. - 0094-8276 .- 1944-8007. ; 43:10, s. 4841-4849
  • Tidskriftsartikel (refereegranskat)abstract
    • We report on field-aligned current observations by the four Magnetospheric Multiscale (MMS) spacecraft near the plasma sheet boundary layer (PSBL) during two major substorms on 23 June 2015. Small-scale field-aligned currents were found embedded in fluctuating PSBL flux tubes near the separatrix region. We resolve, for the first time, short-lived earthward (downward) intense field-aligned current sheets with thicknesses of a few tens of kilometers, which are well below the ion scale, on flux tubes moving equatorward/earthward during outward plasma sheet expansion. They coincide with upward field-aligned electron beams with energies of a few hundred eV. These electrons are most likely due to acceleration associated with a reconnection jet or high-energy ion beam-produced disturbances. The observations highlight coupling of multiscale processes in PSBL as a consequence of magnetotail reconnection.
  •  
2.
  • Burch, J. L., et al. (författare)
  • High-Frequency Wave Generation in Magnetotail Reconnection : Linear Dispersion Analysis
  • 2019
  • Ingår i: Geophysical Research Letters. - : AMER GEOPHYSICAL UNION. - 0094-8276 .- 1944-8007. ; 46:8, s. 4089-4097
  • Tidskriftsartikel (refereegranskat)abstract
    • Plasma and wave measurements from the NASA Magnetospheric Multiscale mission are presented for magnetotail reconnection events on 3 July and 11 July 2017. Linear dispersion analyses were performed using distribution functions comprising up to six drifting bi-Maxwellian distributions. In both events electron crescent-shaped distributions are shown to be responsible for upper hybrid waves near the X-line. In an adjacent location within the 3 July event a monodirectional field-aligned electron beam drove parallel-propagating beam-mode waves. In the 11 July event an electron distribution consisting of a drifting core and two crescents was shown to generate upper-hybrid and beam-mode waves at three different frequencies, explaining the observed broadband waves. Multiple harmonics of the upper hybrid waves were observed but cannot be explained by the linear dispersion analysis since they result from nonlinear beam interactions. Plain Language Summary Magnetic reconnection is a process that occurs throughout the universe in ionized gases (plasmas) containing embedded magnetic fields. This process converts magnetic energy to electron and ion energy, causing phenomena such as solar flares and auroras. The NASA Magnetospheric Multiscale mission has shown that in magnetic reconnection regions there are intense electric field oscillations or waves and that electrons form crescent and beam-like populations propagating both along and perpendicular to the magnetic field. This study shows that the observed electron populations are responsible for high-frequency waves including their propagation directions and frequency ranges.
  •  
3.
  • Genestreti, K. J., et al. (författare)
  • MMS Observation of Asymmetric Reconnection Supported by 3-D Electron Pressure Divergence
  • 2018
  • Ingår i: Journal of Geophysical Research - Space Physics. - 2169-9380 .- 2169-9402. ; 123:3, s. 1806-1821
  • Tidskriftsartikel (refereegranskat)abstract
    • We identify the electron diffusion region (EDR) of a guide field dayside reconnection site encountered by the Magnetospheric Multiscale (MMS) mission and estimate the terms in generalized Ohm's law that controlled energy conversion near the X-point. MMS crossed the moderate-shear (similar to 130 degrees) magnetopause southward of the exact X-point. MMS likely entered the magnetopause far from the X-point, outside the EDR, as the size of the reconnection layer was less than but comparable to the magnetosheath proton gyroradius, and also as anisotropic gyrotropic "outflow" crescent electron distributions were observed. MMS then approached the X-point, where all four spacecraft simultaneously observed signatures of the EDR, for example, an intense out-of-plane electron current, moderate electron agyrotropy, intense electron anisotropy, nonideal electric fields, and nonideal energy conversion. We find that the electric field associated with the nonideal energy conversion is (a) well described by the sum of the electron inertial and pressure divergence terms in generalized Ohms law though (b) the pressure divergence term dominates the inertial term by roughly a factor of 5:1, (c) both the gyrotropic and agyrotropic pressure forces contribute to energy conversion at the X-point, and (d) both out-of-the-reconnection-plane gradients (partial derivative/partial derivative M) and in-plane (partial derivative/partial derivative L, N) in the pressure tensor contribute to energy conversion near the X-point. This indicates that this EDR had some electron-scale structure in the out-of-plane direction during the time when (and at the location where) the reconnection site was observed.
  •  
4.
  • Hasegawa, H., et al. (författare)
  • Magnetic Field Annihilation in a Magnetotail Electron Diffusion Region With Electron-Scale Magnetic Island
  • 2022
  • Ingår i: Journal of Geophysical Research - Space Physics. - : American Geophysical Union (AGU). - 2169-9380 .- 2169-9402. ; 127:7
  • Tidskriftsartikel (refereegranskat)abstract
    • We present observations in Earth's magnetotail by the Magnetospheric Multiscale spacecraft that are consistent with magnetic field annihilation, rather than magnetic topology change, causing fast magnetic-to-electron energy conversion in an electron-scale current sheet. Multi-spacecraft analysis for the magnetic field reconstruction shows that an electron-scale magnetic island was embedded in the observed electron diffusion region (EDR), suggesting an elongated shape of the EDR. Evidence for the annihilation was revealed in the form of the island growing at a rate much lower than expected for the standard X-type geometry of the EDR, which indicates that magnetic flux injected into the EDR was not ejected from the X-point or accumulated in the island, but was dissipated in the EDR. This energy conversion process is in contrast to that in the standard EDR of a reconnecting current sheet where the energy of antiparallel magnetic fields is mostly converted to electron bulk-flow energy. Fully kinetic simulation also demonstrates that an elongated EDR is subject to the formation of electron-scale magnetic islands in which fast but transient annihilation can occur. Consistent with the observations and simulation, theoretical analysis shows that fast magnetic diffusion can occur in an elongated EDR in the presence of nongyrotropic electron effects. We suggest that the annihilation in elongated EDRs may contribute to the dissipation of magnetic energy in a turbulent collisionless plasma.
  •  
5.
  • Hasegawa, H., et al. (författare)
  • Reconstruction of the Electron Diffusion Region of Magnetotail Reconnection seen by the MMS Spacecraft on 11July 2017
  • 2019
  • Ingår i: Journal of Geophysical Research - Space Physics. - : AMER GEOPHYSICAL UNION. - 2169-9380 .- 2169-9402. ; 124:1, s. 122-138
  • Tidskriftsartikel (refereegranskat)abstract
    • We present results from the reconstruction of the electron diffusion region of magnetotail reconnection observed by the Magnetospheric Multiscale (MMS) spacecraft on 11 July 2017. In the event, the conditions were suited for the reconstruction technique, developed by Sonnerup et al. (2016, https://doi.org/10.1002/2016JA022430), that produces magnetic field and electron streamline maps based on a two-dimensional, time-independent, inertialess form of electron magnetohydrodynamic equation, assuming an approximately symmetric current sheet and negligible guide magnetic field. For such a two-dimensional and steady structure, the X line orientation can be estimated from a method based on Ampere's law using single-spacecraft measurements of the magnetic field and electric current density. Our reconstruction results indicate that although the X point was not captured inside its tetrahedron, MMS approached the X point as close as one electron inertial length similar to 27 km. The opening angle of the recovered separatrix field line, combined with theory, suggests that the dimensionless reconnection rate was 0.17, which is consistent with the measured reconnection electric field 2-4 mV/m. The stagnation point of the reconstructed electron flow is shifted earthward of the X point by similar to 90 km, one possible interpretation of which is discussed. The energy conversion rate j . E' in the electron frame tends to be higher near the stagnation point, consistent with earlier observations and simulations, and is not correlated with the amplitude of broadband electrostatic waves observed in the upper-hybrid frequency range. The latter suggests that the waves did not contribute to energy dissipation in this particular electron diffusion region. Plain Language Summary Magnetic reconnection is a fundamental plasma process that controls transfer of solar wind energy and mass to planetary magnetospheres and causes explosive energy release associated with solar flares and sudden auroral brightening. National Aeronautics and Space Administration's Magnetospheric Multiscale (MMS) mission, which consists of four identical spacecraft launched in March 2015, aims at elucidating how magnetic reconnection works with unprecedented high temporal and spatial resolution measurements of charged particles and electromagnetic fields in space. MMS has been observing the Earth's magnetotail since May 2017 and encountered the central region of magnetic reconnection, called the electron diffusion region, on 11 July 2017. In this study, we present two-dimensional images of this region recovered from the MMS electron and magnetic field measurements, showing that the electron flow pattern in the electron diffusion region is not as simple as predicted by theory. The results provide new insights about the reconnection process in the actual space environment.
  •  
6.
  • Burch, J. L., et al. (författare)
  • Localized Oscillatory Energy Conversion in Magnetopause Reconnection
  • 2018
  • Ingår i: Geophysical Research Letters. - : AMER GEOPHYSICAL UNION. - 0094-8276 .- 1944-8007. ; 45:3, s. 1237-1245
  • Tidskriftsartikel (refereegranskat)abstract
    • Data from the NASA Magnetospheric Multiscale mission are used to investigate asymmetric magnetic reconnection at the dayside boundary between the Earth's magnetosphere and the solar wind. High-resolution measurements of plasmas and fields are used to identify highly localized (similar to 15 electron Debye lengths) standing wave structures with large electric field amplitudes (up to 100 mV/m). These wave structures are associated with spatially oscillatory energy conversion, which appears as alternatingly positive and negative values of J . E. For small guide magnetic fields the wave structures occur in the electron stagnation region at the magnetosphere edge of the electron diffusion region. For larger guide fields the structures also occur near the reconnection X-line. This difference is explained in terms of channels for the out-of-plane current (agyrotropic electrons at the stagnation point and guide field-aligned electrons at the X-line).
  •  
7.
  • Burch, J. L., et al. (författare)
  • Wave Phenomena and Beam-Plasma Interactions at the Magnetopause Reconnection Region
  • 2018
  • Ingår i: Journal of Geophysical Research - Space Physics. - : AMER GEOPHYSICAL UNION. - 2169-9380 .- 2169-9402. ; 123:2, s. 1118-1133
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper reports on Magnetospheric Multiscale observations of whistler mode chorus and higher-frequency electrostatic waves near and within a reconnection diffusion region on 23 November 2016. The diffusion region is bounded by crescent-shaped electron distributions and associated dissipation just upstream of the X-line and by magnetic field-aligned currents and electric fields leading to dissipation near the electron stagnation point. Measurements were made southward of the X-line as determined by southward directed ion and electron jets. We show that electrostatic wave generation is due to magnetosheath electron beams formed by the electron jets as they interact with a cold background plasma and more energetic population of magnetospheric electrons. On the magnetosphere side of the X-line the electron beams are accompanied by a strong perpendicular electron temperature anisotropy, which is shown to be the source of an observed rising-tone whistler mode chorus event. We show that the apex of the chorus event and the onset of electrostatic waves coincide with the opening of magnetic field lines at the electron stagnation point.
  •  
8.
  • Ergun, R. E., et al. (författare)
  • Magnetic Reconnection, Turbulence, and Particle Acceleration : Observations in the Earth's Magnetotail
  • 2018
  • Ingår i: Geophysical Research Letters. - : Blackwell Publishing Ltd. - 0094-8276 .- 1944-8007. ; 45:8, s. 3338-3347
  • Tidskriftsartikel (refereegranskat)abstract
    • We report observations of turbulent dissipation and particle acceleration from large-amplitude electric fields (E) associated with strong magnetic field (B) fluctuations in the Earth's plasma sheet. The turbulence occurs in a region of depleted density with anti-earthward flows followed by earthward flows suggesting ongoing magnetic reconnection. In the turbulent region, ions and electrons have a significant increase in energy, occasionally >100 keV, and strong variation. There are numerous occurrences of |E| >100 mV/m including occurrences of large potentials (>1 kV) parallel to B and occurrences with extraordinarily large J · E (J is current density). In this event, we find that the perpendicular contribution of J · E with frequencies near or below the ion cyclotron frequency (fci) provide the majority net positive J · E. Large-amplitude parallel E events with frequencies above fci to several times the lower hybrid frequency provide significant dissipation and can result in energetic electron acceleration.
  •  
9.
  • Nakamura, T. K. M., et al. (författare)
  • Mass and Energy Transfer Across the Earth's Magnetopause Caused by Vortex-Induced Reconnection
  • 2017
  • Ingår i: Journal of Geophysical Research - Space Physics. - : American Geophysical Union (AGU). - 2169-9380 .- 2169-9402. ; 122:11, s. 11505-11522
  • Tidskriftsartikel (refereegranskat)abstract
    • When the interplanetary magnetic field (IMF) is strongly northward, a boundary layer that contains a considerable amount of plasma of magnetosheath origin is often observed along and earthward of the low-latitude magnetopause. Such a preexisting boundary layer, with a higher density than observed in the adjacent magnetosphere, reduces the local Alfven speed and allows the Kelvin-Helmholtz (KH) instability to grow more strongly. We employ a three-dimensional fully kinetic simulation to model an event observed by the Magnetospheric Multiscale (MMS) mission in which the spacecraft detected substantial KH waves between a preexisting boundary layer and the magnetosheath during strong northward IMF. Initial results of this simulation have successfully demonstrated ion-scale signatures of magnetic reconnection induced by the nonlinearly developed KH vortex, which are quantitatively consistent with MMS observations. We further quantify the simulated mass and energy transfer processes driven by this vortex-induced reconnection (VIR) and show that during this particular MMS event, (i) mass enters a new mixing layer formed by the VIR more efficiently from the preexisting boundary layer side than from the magnetosheath side, (ii) mixed plasmas within the new mixing layer convect tailward along the magnetopause at more than half the magnetosheath flow speed, and (iii) energy dissipation in localized VIR dissipation regions results in a strong parallel electron heating within the mixing layer. The quantitative agreements between the simulation and MMS observations allow new predictions that elucidate how the mass and energy transfer processes occur near the magnetopause during strong northward IMF.
  •  
10.
  • Toledo-Redondo, S., et al. (författare)
  • Solar Wind-Magnetosphere Coupling During Radial Interplanetary Magnetic Field Conditions : Simultaneous Multi-Point Observations
  • 2021
  • Ingår i: Journal of Geophysical Research - Space Physics. - : American Geophysical Union (AGU). - 2169-9380 .- 2169-9402. ; 126:11
  • Tidskriftsartikel (refereegranskat)abstract
    • In-situ spacecraft missions are powerful assets to study processes that occur in space plasmas. One of their main limitations, however, is extrapolating such local measurements to the global scales of the system. To overcome this problem at least partially, multi-point measurements can be used. There are several multi-spacecraft missions currently operating in the Earth's magnetosphere, and the simultaneous use of the data collected by them provides new insights into the large-scale properties and evolution of magnetospheric plasma processes. In this work, we focus on studying the Earth's magnetopause (MP) using a conjunction between the Magnetospheric Multiscale and Cluster fleets, when both missions skimmed the MP for several hours at distant locations during radial interplanetary magnetic field (IMF) conditions. The observed MP positions as a function of the evolving solar wind conditions are compared to model predictions of the MP. We observe an inflation of the magnetosphere (similar to 0.7 R-E), consistent with magnetosheath pressure decrease during radial IMF conditions, which is less pronounced on the flank (<0.2 R-E). There is observational evidence of magnetic reconnection in the subsolar region for the whole encounter, and in the dusk flank for the last portion of the encounter, suggesting that reconnection was extending more than 15 R-E. However, reconnection jets were not always observed, suggesting that reconnection was patchy, intermittent or both. Shear flows reduce the reconnection rate up to similar to 30% in the dusk flank according to predictions, and the plasma beta enhancement in the magnetosheath during radial IMF favors reconnection suppression by the diamagnetic drift.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 18

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy