SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Gicevičius Mindaugas) "

Sökning: WFRF:(Gicevičius Mindaugas)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Silverå Ejneby, Malin, et al. (författare)
  • Extracellular Photovoltage Clamp Using Conducting Polymer-Modified Organic Photocapacitors
  • 2020
  • Ingår i: Advanced Materials Technologies. - : WILEY. - 2365-709X. ; 5:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Optoelectronic control of physiological processes accounts for new possibilities ranging from fundamental research to treatment of disease. Among nongenetic light-driven approaches, organic semiconductor-based device platforms such as the organic electrolytic photocapacitor (OEPC) offer the possibility of localized and wireless stimulation with a minimal mechanical footprint. Optimization of efficiency hinges on increasing effective capacitive charge delivery. Herein, a simple strategy to significantly enhance the photostimulation performance of OEPC devices by employing coatings of the conducting polymer formulation poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate), or PEDOT:PSS is reported. This modification increases the charge density of the stimulating photoelectrodes by a factor of 2-3 and simultaneously decreases the interfacial impedance. The electrophysiological effects of PEDOT:PSS-derivatized OEPCs on Xenopus laevis oocyte cells on membrane potential are measured and voltage-clamp techniques are used, finding an at-least twofold increase in capacitive coupling. The large electrolytic capacitance of PEDOT:PSS allows the OEPC to locally alter the extracellular voltage and keep it constant for long periods of time, effectively enabling a unique type of light-controlled membrane depolarization for measurements of ion channel opening. The finding that PEDOT:PSS-coated OEPCs can remain stable after a 50-day accelerated ageing test demonstrates that PEDOT:PSS modification can be applied for fabricating reliable and efficient optoelectronic stimulation devices.
  •  
2.
  • Simatos, Dimitrios, et al. (författare)
  • Effects of Processing-Induced Contamination on Organic Electronic Devices
  • 2023
  • Ingår i: Small Methods. - : Wiley. - 2366-9608. ; 7:11
  • Tidskriftsartikel (refereegranskat)abstract
    • Organic semiconductors are a family of pi-conjugated compounds used in many applications, such as displays, bioelectronics, and thermoelectrics. However, their susceptibility to processing-induced contamination is not well understood. Here, it is shown that many organic electronic devices reported so far may have been unintentionally contaminated, thus affecting their performance, water uptake, and thin film properties. Nuclear magnetic resonance spectroscopy is used to detect and quantify contaminants originating from the glovebox atmosphere and common laboratory consumables used during device fabrication. Importantly, this in-depth understanding of the sources of contamination allows the establishment of clean fabrication protocols, and the fabrication of organic field effect transistors (OFETs) with improved performance and stability. This study highlights the role of unintentional contaminants in organic electronic devices, and demonstrates that certain stringent processing conditions need to be met to avoid scientific misinterpretation, ensure device reproducibility, and facilitate performance stability. The experimental procedures and conditions used herein are typical of those used by many groups in the field of solution-processed organic semiconductors. Therefore, the insights gained into the effects of contamination are likely to be broadly applicable to studies, not just of OFETs, but also of other devices based on these materials.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy