SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Giusca C. E.) "

Sökning: WFRF:(Giusca C. E.)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Melios, C., et al. (författare)
  • Tuning epitaxial graphene sensitivity to water by hydrogen intercalation
  • 2017
  • Ingår i: Nanoscale. - : Royal Society of Chemistry (RSC). - 2040-3372 .- 2040-3364. ; 9:10, s. 3440-3448
  • Tidskriftsartikel (refereegranskat)abstract
    • The effects of humidity on the electronic properties of quasi-free standing one layer graphene (QFS 1LG) are investigated via simultaneous magneto-transport in the van der Pauw geometry and local work function measurements in a controlled environment. QFS 1LG on 4H-SiC(0001) is obtained by hydrogen intercalation of the interfacial layer. In this system, the carrier concentration experiences a two-fold increase in sensitivity to changes in relative humidity as compared to the as-grown epitaxial graphene. This enhanced sensitivity to water is attributed to the lowering of the hydrophobicity of QFS 1LG, which results from spontaneous polarization of 4H-SiC(0001) strongly influencing the graphene. Moreover, the superior carrier mobility of the QFS 1LG system is retained even at the highest humidity. The work function maps constructed from Kelvin probe force microscopy also revealed higher sensitivity to water for 1LG compared to 2LG in both QFS 1LG and as-grown systems. These results point to a new field of applications for QFS 1LG, i.e., as humidity sensors, and the corresponding need for metrology in calibration of graphene-based sensors and devices.
  •  
2.
  • Kim, Kyung Ho, 1984, et al. (författare)
  • Ambipolar charge transport in quasi-free-standing monolayer graphene on SiC obtained by gold intercalation
  • 2020
  • Ingår i: Physical Review B. - : American Physical Society. - 2469-9950 .- 2469-9969. ; 102:16
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a study of quasi-free-standing monolayer graphene obtained by intercalation of Au atoms at the interface between the carbon buffer layer (Bu-L) and the silicon-terminated face (0001) of 4H-silicon carbide. Au intercalation is achieved by deposition of an atomically thin Au layer on the Bu-L followed by annealing at 850 °C in an argon atmosphere. We explore the intercalation of Au and decoupling of the Bu-L into quasi-free-standing monolayer graphene by surface science characterization and electron transport in top-gated electronic devices. By gate-dependent magnetotransport we find that the Au-intercalated buffer layer displays all properties of monolayer graphene, namely gate-tunable ambipolar transport across the Dirac point, but we find no observable enhancement of spin-orbit effects in the graphene layer, despite its proximity to the intercalated Au layer. 
  •  
3.
  • Panchal, V., et al. (författare)
  • Atmospheric doping effects in epitaxial graphene: correlation of local and global electrical studies
  • 2016
  • Ingår i: 2D Materials. - : IOP Publishing. - 2053-1583. ; 3:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We directly correlate the local (20 nm scale) and global electronic properties of a device containing mono-, bi- and tri-layer epitaxial graphene (EG) domains on 6H-SiC (0001) by simultaneously performing local surface potential measurements using Kelvin probe force microscopy and global transport measurements. Using well-controlled environmental conditions we investigate the doping effects of N-2, O-2, water vapour and NO2 at concentrations representative of the ambient air. We show that presence of O-2, water vapour and NO2 leads to p-doping of all EG domains. However, the thicker layers of EG are significantly less affected. Furthermore, we demonstrate that the general consensus of O-2 and water vapour present in ambient air providing majority of the p-doping to graphene is a common misconception. We experimentally show that even the combined effect of O-2, water vapour, and NO2 at concentrations higher than typically present in the atmosphere does not fully replicate p-doping from ambient air. Thus, for EG gas sensors it is essential to consider naturally occurring environmental effects and properly separate them from those coming from targeted species.
  •  
4.
  • Panchal, V., et al. (författare)
  • Local electric field screening in bi-layer graphene devices
  • 2014
  • Ingår i: Frontiers of Physics. - : Frontiers Media SA. - 2296-424X. ; 2, s. 1-10
  • Tidskriftsartikel (refereegranskat)abstract
    • © 2014 Panchal, Giusca, Lartsev, Yakimova and Kazakova. We present experimental studies of both local and macroscopic electrical effects in uniform single- (1LG) and bi-layer graphene (2LG) devices as well as in devices with non-uniform graphene coverage, under ambient conditions. DC transport measurements on sub-micron scale Hall bar devices were used to show a linear rise in carrier density with increasing 2LG coverage. Electrical scanning gate microscopy was used to locally top gate uniform and non-uniform devices in order to observe the effect of local electrical gating. We experimentally show a significant level of electric field screening by 2LG. We demonstrate that SGM technique is an extremely useful research tool for studies of local screening effects, which provides a complementary view on phenomena that are usually considered only within a macroscopic experimental scheme.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy