SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Guell M) "

Search: WFRF:(Guell M)

  • Result 1-10 of 20
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  •  
3.
  •  
4.
  • Springer, W, et al. (author)
  • Heterozygous PINK1 p.G411S mutation increases risk for Parkinson's disease (PD)
  • 2016
  • In: Movement Disorders. - : Wiley. - 0885-3185. ; 31:Suppl. S2, s. 282-282
  • Conference paper (peer-reviewed)abstract
    • Objective: To investigate the possible disease-association and pathogenic mechanisms of heterozygous PINK1 mutations from a genetic, functional, and structural perspective. Background: It has been postulated that heterozygous mutations in recessive PD genes may increase disease risk. In particular, the PINK1 p.G411S mutation has been reported in families with dominant inheritance patterns, suggesting that it might confer a sizeable disease risk. Methods: We performed a pedigree analysis of seven patients with a heterozygous PINK1 p.G411S mutation with at least one additional affected family member. We screened five case-control series and performed a meta-analysis of previous studies that had examined the variant. For functional cell-based analyses, we used patients skin fibroblast from PINK1 p.G411S or p.Q456X heterozygotes and investigated endogenous protein levels and kinase activity by biochemistry and imaging. For structural analyses, we performed molecular modeling and generated monomeric and dimeric forms of wild type (WT) and mutant PINK1 protein. Using molecular dynamics simulations, we analyzed effects of the p.G411S mutation on WT PINK1 in a heterodimeric complex over time. Results: Our analyses revealed a genetic association of heterozygous PINK1 p.G411S mutation with an increased risk for PD and a possible dominant inheritance with incomplete co-segregation. In patients skin fibroblasts, we establish a dominant negative mode for heterozygous p.G411S mutations under endogenous conditions. While total PINK1 protein levels were similar to controls upon mitochondrial stress, cellular PINK1 kinase activity was significantly reduced in p.G411S heterozygotes compared to WT and importantly to p.Q456X heterozygotes, which resulted in 50% reduction of PINK1 protein levels. Structural analyses supported our hypothesis that the p.G411S mutation can poison PINK1 WT in a heterodimeric complex and thus effectively reduce cellular PINK1 kinase activity. This in turn impairs the protective functions of the PINK1/PARKIN-mediated mitochondrial quality control. Conclusions: Our study uncovers increased disease risk and molecular mechanisms of a particular heterozygous mutation in a recessive PD gene. Based on genetic and clinical evaluation as well as functional and structural characterization, we established PINK1 p.G411S as a rare genetic risk factor with a relatively large effect size conferred by a dominant negative function phenotype.
  •  
5.
  •  
6.
  •  
7.
  • Lopez-Vicario, C, et al. (author)
  • Association of a variant in the gene encoding for ERV1/ChemR23 with reduced inflammation in visceral adipose tissue from morbidly obese individuals
  • 2017
  • In: Scientific reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 7:1, s. 15724-
  • Journal article (peer-reviewed)abstract
    • Obesity comorbidities are closely associated with chronic low-grade adipose tissue inflammation. A number of SNPs associated with inflammation has been identified, underscoring the impact of genetic determinants on this process. Here, we screened SNPs in genes with pro-inflammatory (IL-1β, IL-6, STAT3 and JAK2), anti-inflammatory (IL-10 and SOCS3) and pro-resolving (ERV1/ChemR23) properties in 101 obese and 99 non-obese individuals. Among the SNPs analyzed, we identified that individuals carrying a C allele in the rs1878022 polymorphism of the ERV1/ChemR23 gene, which encodes for the receptor of the pro-resolving mediator RvE1, had increased ERV1/ChemR23 protein expression and reduced levels of the inflammatory cytokine IL-6 in adipose tissue. Moreover, patients carrying the C allele in homozygosity had lower plasma levels of IL-6, IFN-α2, IL-15, IL-1ra, IL-10, GM-CSF, G-CSF and VEGF and enhanced leukocyte responsiveness to RvE1. C-carriers also exhibited decreased TAG to HDL ratio, a surrogate marker of insulin resistance and a predictor of incident fatty liver. Finally, we confirmed in vivo that the ERV1/ChemR23 receptor regulates systemic and tissue inflammation since mice lacking ERV1/ChemR23 expression showed increased IL-6 levels in adipose tissue and peritoneal macrophages. Together, our study identified an ERV1/ChemR23 variant that protects patients with obesity from excessive inflammatory burden.
  •  
8.
  •  
9.
  • Guell, Mireia, et al. (author)
  • Theoretical study of the hydroxylation of phenolates by the Cu2O2(N,N '-dimethylethylenediamine)(2)(2+) complex
  • 2009
  • In: Journal of Biological Inorganic Chemistry. - : Springer Science and Business Media LLC. - 0949-8257 .- 1432-1327. ; 14:2, s. 229-242
  • Journal article (peer-reviewed)abstract
    • Tyrosinase catalyzes the ortho hydroxylation of monophenols and the subsequent oxidation of the diphenolic products to the resulting quinones. In efforts to create biomimetic copper complexes that can oxidize C-H bonds, Stack and coworkers recently reported a synthetic mu-eta(2):eta(2)-peroxodicopper(II)(DBED)(2) complex ( DBED is N,N'-di-tert-butylethylenediamine), which rapidly hydroxylates phenolates. A reactive intermediate consistent with a bis-mu-oxo-dicopper(III)-phenolate complex, with the O-O bond fully cleaved, is observed experimentally. Overall, the evidence for sequential O-O bond cleavage and C-O bond formation in this synthetic complex suggests an alternative mechanism to the concerted or late-stage O-O bond scission generally accepted for the phenol hydroxylation reaction performed by tyrosinase. In this work, the reaction mechanism of this peroxodicopper(II) complex was studied with hybrid density functional methods by replacing DBED in the mu-eta(2):eta(2)-peroxodicopper(II)(DBED)(2) complex by N,N'-dimethylethylenediamine ligands to reduce the computational costs. The reaction mechanism obtained is compared with the existing proposals for the catalytic ortho hydroxylation of monophenol and the subsequent oxidation of the diphenolic product to the resulting quinone with the aim of gaining some understanding about the copper-promoted oxidation processes mediated by 2: 1 Cu(I)O-2-derived species.
  •  
10.
  • Guell, Mireia, et al. (author)
  • Theoretical study of the hydroxylation of phenols mediated by an end-on bound superoxo-copper(II) complex
  • 2009
  • In: Journal of Biological Inorganic Chemistry. - : Springer Science and Business Media LLC. - 0949-8257 .- 1432-1327. ; 14:2, s. 273-285
  • Journal article (peer-reviewed)abstract
    • Peptidylglycine alpha-amidating monooxygenase and dopamine beta-monooxygenase are copper-containing proteins which catalyze essential hydroxylation reactions in biological systems. There are several possible mechanisms for the reductive O-2-activation at their mononuclear copper active site. Recently, Karlin and coworkers reported on the reactivity of a copper(II)-superoxo complex which is capable of inducing the hydroxylation of phenols with incorporated oxygen atoms derived from the Cu(II)-O-2(-) moiety. In the present work the reaction mechanism for the abovementioned superoxo complex with phenols is studied. The pathways found are analyzed with the aim of providing some insight into the nature of the chemical and biological copper-promoted oxidative processes with 1:1 Cu(I)/O-2-derived species.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 20

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view