SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Guerrini G) "

Search: WFRF:(Guerrini G)

  • Result 1-10 of 39
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Niemi, MEK, et al. (author)
  • 2021
  • swepub:Mat__t
  •  
2.
  •  
3.
  • Helbig, K. L., et al. (author)
  • De Novo Pathogenic Variants in CACNA1E Cause Developmental and Epileptic Encephalopathy with Contractures, Macrocephaly, and Dyskinesias
  • 2018
  • In: American Journal of Human Genetics. - : Elsevier BV. - 0002-9297 .- 1537-6605. ; 103:5, s. 666-678
  • Journal article (peer-reviewed)abstract
    • Developmental and epileptic encephalopathies (DEEs) are severe neurodevelopmental disorders often beginning in infancy or early childhood that are characterized by intractable seizures, abundant epileptiform activity on EEG, and developmental impairment or regression. CACNA1E is highly expressed in the central nervous system and encodes the alpha(1)-subunit of the voltage-gated Ca(V)2.3 channel, which conducts high voltage-activated R-type calcium currents that initiate synaptic transmission. Using next-generation sequencing techniques, we identified de novo CACNA1E variants in 30 individuals with DEE, characterized by refractory infantile-onset seizures, severe hypotonia, and profound developmental impairment, often with congenital contractures, macrocephaly, hyperkinetic movement disorders, and early death. Most of the 14, partially recurring, variants cluster within the cytoplasmic ends of all four S6 segments, which form the presumed Ca(V)2.3 channel activation gate. Functional analysis of several S6 variants revealed consistent gain-of-function effects comprising facilitated voltage-dependent activation and slowed inactivation. Another variant located in the domain II S4-S5 linker results in facilitated activation and increased current density. Five participants achieved seizure freedom on the anti-epileptic drug topiramate, which blocks R-type calcium channels. We establish pathogenic variants in CACNA1E as a cause of DEEs and suggest facilitated R-type calcium currents as a disease mechanism for human epilepsy and developmental disorders.
  •  
4.
  • Pinaroli, G., et al. (author)
  • PERCIVAL : Possible applications in X-ray micro-tomography
  • 2020
  • In: Journal of Instrumentation. - 1748-0221. ; 15:2
  • Journal article (peer-reviewed)abstract
    • X-ray computed micro-tomography (μCT) is one of the most advanced and common non-destructive techniques in the field of medical imaging and material science. It allows recreating virtual models (3D models), without destroying the original objects, by measuring three-dimensional X-ray attenuation coefficient maps of samples on the (sub) micrometer scale. The quality of the images obtained using μCT is strongly dependent on the performance of the associated X-ray detector i.e. to the acquisition of information of the X-ray beam traversing the patient/sample being precise and accurate. Detectors for μCT have to meet the requirements of the specific tomography procedure in which they are going to be used. In general, the key parameters are high spatial resolution, high dynamic range, uniformity of response, high contrast sensitivity, fast acquisition readout and support of high frame rates. At present the detection devices in commercial μCT scanners are dominated by charge-coupled devices (CCD), photodiode arrays, CMOS acquisition circuits and more recently by hybrid pixel detectors. Monolithic CMOS imaging sensors, which offer reduced pixel sizes and low electronic noise, are certainly excellent candidates for μCT and may be used for the development of novel high-resolution imaging applications. The uses of monolithic CMOS based detectors such as the PERCIVAL detector are being recently explored for synchrotron and FEL applications. PERCIVAL was developed to operate in synchrotron and FEL facilities in the soft X-ray regime from 250 eV to 1 keV and it could offer all the aforementioned technical requirements needed in μCT experiments. In order to adapt the system for a typical tomography application, a scintillator is required, to convert incoming X-ray radiation (∼ tens of KeV) into visible light which may be detected with high efficiency. Such a taper-based scintillator was developed and mounted in front of the sensitive area of the PERCIVAL imager. In this presentation we will report the setup of the detector system and preliminary results of first μCTs of reference objects, which were performed in the TomoLab at ELETTRA. 
  •  
5.
  • Tomić, I., et al. (author)
  • Shake-table testing of a stone masonry building aggregate : overview of blind prediction study
  • 2023
  • In: Bulletin of Earthquake Engineering. - : Springer Science and Business Media LLC. - 1570-761X .- 1573-1456.
  • Journal article (peer-reviewed)abstract
    • City centres of Europe are often composed of unreinforced masonry structural aggregates, whose seismic response is challenging to predict. To advance the state of the art on the seismic response of these aggregates, the Adjacent Interacting Masonry Structures (AIMS) subproject from Horizon 2020 project Seismology and Earthquake Engineering Research Infrastructure Alliance for Europe (SERA) provides shake-table test data of a two-unit, double-leaf stone masonry aggregate subjected to two horizontal components of dynamic excitation. A blind prediction was organized with participants from academia and industry to test modelling approaches and assumptions and to learn about the extent of uncertainty in modelling for such masonry aggregates. The participants were provided with the full set of material and geometrical data, construction details and original seismic input and asked to predict prior to the test the expected seismic response in terms of damage mechanisms, base-shear forces, and roof displacements. The modelling approaches used differ significantly in the level of detail and the modelling assumptions. This paper provides an overview of the adopted modelling approaches and their subsequent predictions. It further discusses the range of assumptions made when modelling masonry walls, floors and connections, and aims at discovering how the common solutions regarding modelling masonry in general, and masonry aggregates in particular, affect the results. The results are evaluated both in terms of damage mechanisms, base shear forces, displacements and interface openings in both directions, and then compared with the experimental results. The modelling approaches featuring Discrete Element Method (DEM) led to the best predictions in terms of displacements, while a submission using rigid block limit analysis led to the best prediction in terms of damage mechanisms. Large coefficients of variation of predicted displacements and general underestimation of displacements in comparison with experimental results, except for DEM models, highlight the need for further consensus building on suitable modelling assumptions for such masonry aggregates.
  •  
6.
  • Waszak, S. M., et al. (author)
  • Spectrum and prevalence of genetic predisposition in medulloblastoma: a retrospective genetic study and prospective validation in a clinical trial cohort
  • 2018
  • In: Lancet Oncology. - : Elsevier BV. - 1470-2045. ; 19:6, s. 785-798
  • Journal article (peer-reviewed)abstract
    • Background Medulloblastoma is associated with rare hereditary cancer predisposition syndromes; however, consensus medulloblastoma predisposition genes have not been defined and screening guidelines for genetic counselling and testing for paediatric patients are not available. We aimed to assess and define these genes to provide evidence for future screening guidelines. Methods In this international, multicentre study, we analysed patients with medulloblastoma from retrospective cohorts (International Cancer Genome Consortium [ICGC] PedBrain, Medulloblastoma Advanced Genomics International Consortium [MAGIC], and the CEFALO series) and from prospective cohorts from four clinical studies (SJMB03, SJMB12, SJYC07, and I-HIT-MED). Whole-genome sequences and exome sequences from blood and tumour samples were analysed for rare damaging germline mutations in cancer predisposition genes. DNA methylation profiling was done to determine consensus molecular subgroups: WNT (MBWNT), SHH (MBSHH), group 3 (MBGroup3), and group 4 (MBGroup4). Medulloblastoma predisposition genes were predicted on the basis of rare variant burden tests against controls without a cancer diagnosis from the Exome Aggregation Consortium (ExAC). Previously defined somatic mutational signatures were used to further classify medulloblastoma genomes into two groups, a clock-like group (signatures 1 and 5) and a homologous recombination repair deficiency-like group (signatures 3 and 8), and chromothripsis was investigated using previously established criteria. Progression-free survival and overall survival were modelled for patients with a genetic predisposition to medulloblastoma. Findings We included a total of 1022 patients with medulloblastoma from the retrospective cohorts (n=673) and the four prospective studies (n=349), from whom blood samples (n=1022) and tumour samples (n=800) were analysed for germline mutations in 110 cancer predisposition genes. In our rare variant burden analysis, we compared these against 53 105 sequenced controls from ExAC and identified APC, BRCA2, PALB2, PTCH1, SUFU, and TP53 as consensus medulloblastoma predisposition genes according to our rare variant burden analysis and estimated that germline mutations accounted for 6% of medulloblastoma diagnoses in the retrospective cohort. The prevalence of genetic predispositions differed between molecular subgroups in the retrospective cohort and was highest for patients in the MBSHH subgroup (20% in the retrospective cohort). These estimates were replicated in the prospective clinical cohort (germline mutations accounted for 5% of medulloblastoma diagnoses, with the highest prevalence [14%] in the MBSHH subgroup). Patients with germline APC mutations developed MBWNT and accounted for most (five [71%] of seven) cases of MBWNT that had no somatic CTNNB1 exon 3 mutations. Patients with germline mutations in SUFU and PTCH1 mostly developed infant MBSHH. Germline TP53 mutations presented only in childhood patients in the MBSHH subgroup and explained more than half (eight [57%] of 14) of all chromothripsis events in this subgroup. Germline mutations in PALB2 and BRCA2 were observed across the MBSHH, MBGroup3, and MBGroup4 molecular subgroups and were associated with mutational signatures typical of homologous recombination repair deficiency. In patients with a genetic predisposition to medulloblastoma, 5-year progression-free survival was 52% (95% CI 4069) and 5-year overall survival was 65% (95% CI 5281); these survival estimates differed significantly across patients with germline mutations in different medulloblastoma predisposition genes. Interpretation Genetic counselling and testing should be used as a standard-of-care procedure in patients with MBWNT and MBSHH because these patients have the highest prevalence of damaging germline mutations in known cancer predisposition genes. We propose criteria for routine genetic screening for patients with medulloblastoma based on clinical and molecular tumour characteristics. Copyright (c) 2018 The Author(s). Published by Elsevier Ltd.
  •  
7.
  • Correa, J., et al. (author)
  • On the Charge Collection Efficiency of the PERCIVAL Detector
  • 2016
  • In: Journal of Instrumentation. - : IOP. - 1748-0221. ; 11:12
  • Journal article (peer-reviewed)abstract
    • The PERCIVAL soft X-ray imager is being developed by DESY, RAL, Elettra, DLS, and PAL to address the challenges at high brilliance Light Sources such as new-generation Synchrotrons and Free Electron Lasers. Typical requirements for detector systems at these sources are high frame rates, large dynamic range, single-photon counting capability with low probability of false positives, high quantum efficiency, and (multi)-mega-pixel arrangements. PERCIVAL is a monolithic active pixel sensor, based on CMOS technology. It is designed for the soft X-ray regime and, therefore, it is post-processed in order to achieve high quantum efficiency in its primary energy range (250 eV to 1 keV) . This work will report on the latest experimental results on charge collection efficiency obtained for multiple back-side-illuminated test sensors during two campaigns, at the P04 beam-line at PETRA III, and the CiPo beam-line at Elettra, spanning most of the primary energy range as well as testing the performance for photon-energies below 250 eV . In addition, XPS surface analysis was used to cross-check the obtained results.
  •  
8.
  • Correa, J., et al. (author)
  • The PERCIVAL soft X-ray Detector
  • 2018
  • In: 2018 IEEE Nuclear Science Symposium and Medical Imaging Conference, NSS/MIC 2018 - Proceedings. - : Institute of Electrical and Electronics Engineers (IEEE). - 9781538684948
  • Conference paper (peer-reviewed)abstract
    • The PERCIVAL collaboration to develop a soft X-ray imager able to address the challenges of high brilliance light sources, such as new-generation synchrotrons and Free Electron Lasers, has reached one of its major milestones: a full 2-MegaPixel (P2M) system (uninterrupted 4 × 4 cm2 active area) has already seen its first light.Smaller prototypes of the device, a monolithic active pixel sensor based on CMOS technology, have already been fully characterised, and have demonstrated high frame rate, large dynamic range, and relatively high quantum efficiency.The PERCIVAL modular layout allows for clover-leaf like arrangement of up to four P2M systems. Moreover, it will be post-processed in order to achieve a high quantum efficiency in its primary energy range (250 eV to 1 keV).We will present the P2M system, its status and newest results, bring these in context with achieved prototype performance, and outline future steps. 
  •  
9.
  • Galosi, Serena, et al. (author)
  • De novo DHDDS variants cause a neurodevelopmental and neurodegenerative disorder with myoclonus
  • 2022
  • In: Brain : a journal of neurology. - : Oxford University Press (OUP). - 1460-2156. ; 145:1, s. 208-223
  • Journal article (peer-reviewed)abstract
    • Subcellular membrane systems are highly enriched in dolichol, whose role in organelle homeostasis and endosomal-lysosomal pathway remains largely unclear besides being involved in protein glycosylation. DHDDS encodes for the catalytic subunit (DHDDS) of the enzyme cis-prenyltransferase (cis-PTase), involved in dolichol biosynthesis and dolichol-dependent protein glycosylation in the endoplasmic reticulum. An autosomal recessive form of retinitis pigmentosa (retinitis pigmentosa 59) has been associated with a recurrent DHDDS variant. Moreover, two recurring de novo substitutions were detected in a few cases presenting with neurodevelopmental disorder, epilepsy, and movement disorder. We evaluated a large cohort of patients (n=25) with de novo pathogenic variants in DHDDS and provided the first systematic description of the clinical features and long-term outcome of this new neurodevelopmental and neurodegenerative disorder. The functional impact of the identified variants was explored by yeast complementation system and enzymatic assay. Patients presented during infancy or childhood with a variable association of neurodevelopmental disorder, generalized epilepsy, action myoclonus/cortical tremor, and ataxia. Later in the disease course they experienced a slow neurological decline with the emergence of hyperkinetic and/or hypokinetic movement disorder, cognitive deterioration, and psychiatric disturbances. Storage of lipidic material and altered lysosomes were detected in myelinated fibers and fibroblasts, suggesting a dysfunction of the lysosomal enzymatic scavenger machinery. Serum glycoprotein hypoglycosylation was not detected and, in contrast to retinitis pigmentosa and other congenital disorders of glycosylation involving dolichol metabolism, the urinary dolichol D18/D19 ratio was normal. Mapping the disease-causing variants into the protein structure revealed that most of them clustered around the active site of the DHDDS subunit. Functional studies using yeast complementation assay and in vitro activity measurements confirmed that these changes affected the catalytic activity of the cis-PTase and showed growth defect in yeast complementation system as compared with the wild-type enzyme and retinitis pigmentosa-associated protein. In conclusion, we characterized a distinctive neurodegenerative disorder due to de novo DHDDS variants, which clinically belongs to the spectrum of genetic progressive encephalopathies with myoclonus. Clinical and biochemical data from this cohort depicted a condition at the intersection of congenital disorders of glycosylation and inherited storage diseases with several features akin to of progressive myoclonus epilepsy such as neuronal ceroid lipofuscinosis and other lysosomal disorders.
  •  
10.
  • Guerrini, Niccolo, et al. (author)
  • Charging Mechanism of Li2MnO3
  • 2020
  • In: Chemistry of Materials. - : AMER CHEMICAL SOC. - 0897-4756 .- 1520-5002. ; 32:9, s. 3733-3740
  • Journal article (peer-reviewed)abstract
    • Operando mass spectroscopy demonstrates quantitatively that lithium extraction from Li2MnO3 is charge compensated by oxygen loss (O-loss) not oxidation of oxide ions that are retained within the structural framework (O-redox). This fact is confirmed by X-ray absorption and emission spectroscopy. Li NMR shows that the two-phase core-shell structure, which forms on charging, is composed of an intact Li2MnO3 core and a highly disordered shell containing no Li, with a composition close to MnO2. Discharge involves Li insertion into the disordered shell. CO2 and O-2 are detected on charging at 15 mA g(-1), whereas charging by galvanostatic intermittent titration technique (GITT) forms only CO2; an observation in agreement with the previously described model of oxygen evolution from high-voltage cathodes producing singlet O-2 that reacts with the electrolyte forming CO2. The dominance of oxygen evolution over O-redox is in accordance with the model of O-loss occurring when the oxide ions are undercoordinated; O in the shell devoid of Li is coordinated by only 2 Mn.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 39

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view