SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Hakim M) "

Search: WFRF:(Hakim M)

  • Result 1-10 of 71
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Thomas, HS, et al. (author)
  • 2019
  • swepub:Mat__t
  •  
2.
  • 2021
  • swepub:Mat__t
  •  
3.
  •  
4.
  • Adam, A, et al. (author)
  • Abstracts from Hydrocephalus 2016.
  • 2017
  • In: Fluids and Barriers of the CNS. - : Springer Science and Business Media LLC. - 2045-8118. ; 14:Suppl 1
  • Journal article (peer-reviewed)
  •  
5.
  • Fischer, U., et al. (author)
  • Early versus Later Anticoagulation for Stroke with Atrial Fibrillation
  • 2023
  • In: New England Journal of Medicine. - 0028-4793. ; 388:26, s. 2411-2421
  • Journal article (peer-reviewed)abstract
    • BackgroundThe effect of early as compared with later initiation of direct oral anticoagulants (DOACs) in persons with atrial fibrillation who have had an acute ischemic stroke is unclear.MethodsWe performed an investigator-initiated, open-label trial at 103 sites in 15 countries. Participants were randomly assigned in a 1:1 ratio to early anticoagulation (within 48 hours after a minor or moderate stroke or on day 6 or 7 after a major stroke) or later anticoagulation (day 3 or 4 after a minor stroke, day 6 or 7 after a moderate stroke, or day 12, 13, or 14 after a major stroke). Assessors were unaware of the trial-group assignments. The primary outcome was a composite of recurrent ischemic stroke, systemic embolism, major extracranial bleeding, symptomatic intracranial hemorrhage, or vascular death within 30 days after randomization. Secondary outcomes included the components of the composite primary outcome at 30 and 90 days.ResultsOf 2013 participants (37% with minor stroke, 40% with moderate stroke, and 23% with major stroke), 1006 were assigned to early anticoagulation and 1007 to later anticoagulation. A primary-outcome event occurred in 29 participants (2.9%) in the early-treatment group and 41 participants (4.1%) in the later-treatment group (risk difference, -1.18 percentage points; 95% confidence interval [CI], -2.84 to 0.47) by 30 days. Recurrent ischemic stroke occurred in 14 participants (1.4%) in the early-treatment group and 25 participants (2.5%) in the later-treatment group (odds ratio, 0.57; 95% CI, 0.29 to 1.07) by 30 days and in 18 participants (1.9%) and 30 participants (3.1%), respectively, by 90 days (odds ratio, 0.60; 95% CI, 0.33 to 1.06). Symptomatic intracranial hemorrhage occurred in 2 participants (0.2%) in both groups by 30 days.ConclusionsIn this trial, the incidence of recurrent ischemic stroke, systemic embolism, major extracranial bleeding, symptomatic intracranial hemorrhage, or vascular death at 30 days was estimated to range from 2.8 percentage points lower to 0.5 percentage points higher (based on the 95% confidence interval) with early than with later use of DOACs. (Funded by the Swiss National Science Foundation and others; ELAN ClinicalTrials.gov number, .)
  •  
6.
  • Hachinski, Vladimir, et al. (author)
  • Stroke: Working Toward a Prioritized World Agenda
  • 2010
  • In: Stroke: a journal of cerebral circulation. - 1524-4628. ; 41:6, s. 1084-1099
  • Journal article (peer-reviewed)abstract
    • Background and Purpose-The aim of the Synergium was to devise and prioritize new ways of accelerating progress in reducing the risks, effects, and consequences of stroke. Methods-Preliminary work was performed by 7 working groups of stroke leaders followed by a synergium (a forum for working synergistically together) with approximately 100 additional participants. The resulting draft document had further input from contributors outside the synergium. Results-Recommendations of the Synergium are: Basic Science, Drug Development and Technology: There is a need to develop: (1) New systems of working together to break down the prevalent "silo" mentality; (2) New models of vertically integrated basic, clinical, and epidemiological disciplines; and (3) Efficient methods of identifying other relevant areas of science. Stroke Prevention: (1) Establish a global chronic disease prevention initiative with stroke as a major focus. (2) Recognize not only abrupt clinical stroke, but subtle subclinical stroke, the commonest type of cerebrovascular disease, leading to impairments of executive function. (3) Develop, implement and evaluate a population approach for stroke prevention. (4) Develop public health communication strategies using traditional and novel (eg, social media/marketing) techniques. Acute Stroke Management: Continue the establishment of stroke centers, stroke units, regional systems of emergency stroke care and telestroke networks. Brain Recovery and Rehabilitation: (1) Translate best neuroscience, including animal and human studies, into poststroke recovery research and clinical care. (2) Standardize poststroke rehabilitation based on best evidence. (3) Develop consensus on, then implementation of, standardized clinical and surrogate assessments. (4) Carry out rigorous clinical research to advance stroke recovery. Into the 21st Century: Web, Technology and Communications: (1) Work toward global unrestricted access to stroke-related information. (2) Build centralized electronic archives and registries. Foster Cooperation Among Stakeholders (large stroke organizations, nongovernmental organizations, governments, patient organizations and industry) to enhance stroke care. Educate and energize professionals, patients, the public and policy makers by using a "Brain Health" concept that enables promotion of preventive measures. Conclusions-To accelerate progress in stroke, we must reach beyond the current status scientifically, conceptually, and pragmatically. Advances can be made not only by doing, but ceasing to do. Significant savings in time, money, and effort could result from discontinuing practices driven by unsubstantiated opinion, unproven approaches, and financial gain. Systematic integration of knowledge into programs coupled with careful evaluation can speed the pace of progress.
  •  
7.
  • Hachinski, Vladimir, et al. (author)
  • Stroke: Working toward a Prioritized World Agenda
  • 2010
  • In: Cerebrovascular Diseases. - : S. Karger AG. - 1421-9786 .- 1015-9770. ; 30:2, s. 127-147
  • Journal article (peer-reviewed)abstract
    • Background and Purpose: The aim of the Synergium was to devise and prioritize new ways of accelerating progress in reducing the risks, effects, and consequences of stroke. Methods: Preliminary work was performed by 7 working groups of stroke leaders followed by a synergium (a forum for working synergistically together) with approximately 100 additional participants. The resulting draft document had further input from contributors outside the synergium. Results: Recommendations of the Synergium are: Basic Science, Drug Development and Technology: There is a need to develop: (1) New systems of working together to break down the prevalent 'silo' mentality; (2) New models of vertically integrated basic, clinical, and epidemiological disciplines; and (3) Efficient methods of identifying other relevant areas of science. Stroke Prevention: (1) Establish a global chronic disease prevention initiative with stroke as a major focus. (2) Recognize not only abrupt clinical stroke, but subtle subclinical stroke, the commonest type of cerebrovascular disease, leading to impairments of executive function. (3) Develop, implement and evaluate a population approach for stroke prevention. (4) Develop public health communication strategies using traditional and novel (e. g., social media/marketing) techniques. Acute Stroke Management: Continue the establishment of stroke centers, stroke units, regional systems of emergency stroke care and telestroke networks. Brain Recovery and Rehabilitation: (1) Translate best neuroscience, including animal and human studies, into poststroke recovery research and clinical care. (2) Standardize poststroke rehabilitation based on best evidence. (3) Develop consensus on, then implementation of, standardized clinical and surrogate assessments. (4) Carry out rigorous clinical research to advance stroke recovery. Into the 21st Century: Web, Technology and Communications: (1) Work toward global unrestricted access to stroke-related information. (2) Build centralized electronic archives and registries. Foster Cooperation Among Stakeholders (large stroke organizations, nongovernmental organizations, governments, patient organizations and industry) to enhance stroke care. Educate and energize professionals, patients, the public and policy makers by using a 'Brain Health' concept that enables promotion of preventive measures. Conclusions: To accelerate progress in stroke, we must reach beyond the current status scientifically, conceptually, and pragmatically. Advances can be made not only by doing, but ceasing to do. Significant savings in time, money, and effort could result from discontinuing practices driven by unsubstantiated opinion, unproven approaches, and financial gain. Systematic integration of knowledge into programs coupled with careful evaluation can speed the pace of progress. Copyright (C) 2010 American Heart Association. Inc., S. Karger AG, Basel, and John Wiley & Sons, Inc.
  •  
8.
  • Hachinski, Vladimir, et al. (author)
  • Stroke: working toward a prioritized world agenda
  • 2010
  • In: International Journal of Stroke. - : SAGE Publications. - 1747-4949 .- 1747-4930. ; 5:4, s. 238-256
  • Journal article (other academic/artistic)abstract
    • Background and Purpose The aim of the Synergium was to devise and prioritize new ways of accelerating progress in reducing the risks, effects, and consequences of stroke. Methods Preliminary work was performed by seven working groups of stroke leaders followed by a synergium (a forum for working synergistically together) with approximately 100 additional participants. The resulting draft document had further input from contributors outside the synergium. Results Recommendations of the Synergium are: Basic Science, Drug Development and Technology: There is a need to develop: (1) New systems of working together to break down the prevalent 'silo' mentality; (2) New models of vertically integrated basic, clinical, and epidemiological disciplines; and (3) Efficient methods of identifying other relevant areas of science. Stroke Prevention: (1) Establish a global chronic disease prevention initiative with stroke as a major focus. (2) Recognize not only abrupt clinical stroke, but subtle subclinical stroke, the commonest type of cerebrovascular disease, leading to impairments of executive function. (3) Develop, implement and evaluate a population approach for stroke prevention. (4) Develop public health communication strategies using traditional and novel (eg, social media/marketing) techniques. Acute Stroke Management: Continue the establishment of stroke centers, stroke units, regional systems of emergency stroke care and telestroke networks. Brain Recovery and Rehabilitation: (1) Translate best neuroscience, including animal and human studies, into poststroke recovery research and clinical care. (2) Standardize poststroke rehabilitation based on best evidence. (3) Develop consensus on, then implementation of, standardized clinical and surrogate assessments. (4) Carry out rigorous clinical research to advance stroke recovery. Into the 21st Century: Web, Technology and Communications: (1) Work toward global unrestricted access to stroke-related information. (2) Build centralized electronic archives and registries. Foster Cooperation Among Stakeholders (large stroke organizations, nongovernmental organizations, governments, patient organizations and industry) to enhance stroke care. Educate and energize professionals, patients, the public and policy makers by using a 'Brain Health' concept that enables promotion of preventive measures. Conclusions To accelerate progress in stroke, we must reach beyond the current status scientifically, conceptually, and pragmatically. Advances can be made not only by doing, but ceasing to do. Significant savings in time, money, and effort could result from discontinuing practices driven by unsubstantiated opinion, unproven approaches, and financial gain. Systematic integration of knowledge into programs coupled with careful evaluation can speed the pace of progress.
  •  
9.
  • Amemiya, Chris T., et al. (author)
  • The African coelacanth genome provides insights into tetrapod evolution
  • 2013
  • In: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 496:7445, s. 311-316
  • Journal article (peer-reviewed)abstract
    • The discovery of a living coelacanth specimen in 1938 was remarkable, as this lineage of lobe-finned fish was thought to have become extinct 70 million years ago. The modern coelacanth looks remarkably similar to many of its ancient relatives, and its evolutionary proximity to our own fish ancestors provides a glimpse of the fish that first walked on land. Here we report the genome sequence of the African coelacanth, Latimeria chalumnae. Through a phylogenomic analysis, we conclude that the lungfish, and not the coelacanth, is the closest living relative of tetrapods. Coelacanth protein-coding genes are significantly more slowly evolving than those of tetrapods, unlike other genomic features. Analyses of changes in genes and regulatory elements during the vertebrate adaptation to land highlight genes involved in immunity, nitrogen excretion and the development of fins, tail, ear, eye, brain and olfaction. Functional assays of enhancers involved in the fin-to-limb transition and in the emergence of extra-embryonic tissues show the importance of the coelacanth genome as a blueprint for understanding tetrapod evolution.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 71
Type of publication
journal article (59)
conference paper (7)
reports (1)
other publication (1)
research review (1)
Type of content
peer-reviewed (62)
other academic/artistic (6)
pop. science, debate, etc. (1)
Author/Editor
Nordblad, Per (9)
Svensson, M. (9)
Guaita, Lucia (7)
Brown, E. (3)
Kaste, Markku (3)
Moore, R. (3)
show more...
Osman, N. (3)
Song, J. (3)
Mohan, M. (3)
Patel, P. (3)
Khan, A. (3)
Thomas, E. (3)
Hassan, A (3)
Singh, P (3)
Shah, R. (3)
Hankey, Graeme J. (3)
Rothwell, Peter M. (3)
Ahmed, M (3)
O'Neill, S (3)
Ali, A. (3)
Khan, T. (3)
Barry, J (3)
Pata, F (3)
Khatri, C (3)
Smart, NJ (3)
Drake, TM (3)
Lawani, I (3)
Shu, S (3)
Sund, M (3)
Tabiri, S (3)
Ofner, D (3)
Gouvas, N (3)
Sabry, A (3)
Morsi, A (3)
Ng, S (3)
Singh, S (3)
Ahmed, A (3)
Mohan, H (3)
Jovine, E (3)
Adeyeye, A (3)
Sauvat, F (3)
Nouh, T (3)
Nel, D (3)
Shaikh, S (3)
Warren, O (3)
Smith, C (3)
Boal, M (3)
Jha, M (3)
Patel, K (3)
Shah, J (3)
show less...
University
Karolinska Institutet (21)
Uppsala University (20)
Stockholm University (12)
Lund University (8)
Linköping University (5)
Chalmers University of Technology (5)
show more...
Umeå University (4)
University of Gothenburg (3)
Royal Institute of Technology (3)
Luleå University of Technology (1)
Örebro University (1)
Jönköping University (1)
Linnaeus University (1)
Karlstad University (1)
show less...
Language
English (71)
Research subject (UKÄ/SCB)
Natural sciences (24)
Medical and Health Sciences (15)
Engineering and Technology (1)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view