SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Hammer Edith) "

Sökning: WFRF:(Hammer Edith)

  • Resultat 1-10 av 40
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Aleklett, Kristin, et al. (författare)
  • Build your own soil : exploring microfluidics to create microbial habitat structures
  • 2018
  • Ingår i: ISME Journal. - : Springer Science and Business Media LLC. - 1751-7362 .- 1751-7370. ; 12:2, s. 312-319
  • Forskningsöversikt (refereegranskat)abstract
    • Soil is likely the most complex ecosystem on earth. Despite the global importance and extraordinary diversity of soils, they have been notoriously challenging to study. We show how pioneering microfluidic techniques provide new ways of studying soil microbial ecology by allowing simulation and manipulation of chemical conditions and physical structures at the microscale in soil model habitats.The ISME Journal advance online publication, 14 November 2017; doi:10.1038/ismej.2017.184.
  •  
2.
  • Aleklett, Kristin, et al. (författare)
  • Fungal foraging behaviour and hyphal space exploration in micro-structured Soil Chips
  • 2021
  • Ingår i: The Isme Journal. - : Springer Science and Business Media LLC. - 1751-7362 .- 1751-7370.
  • Tidskriftsartikel (refereegranskat)abstract
    • How do fungi navigate through the complex microscopic maze-like structures found in the soil? Fungal behaviour, especially at the hyphal scale, is largely unknown and challenging to study in natural habitats such as the opaque soil matrix. We monitored hyphal growth behaviour and strategies of seven Basidiomycete litter decomposing species in a micro-fabricated "Soil Chip" system that simulates principal aspects of the soil pore space and its micro-spatial heterogeneity. The hyphae were faced with micrometre constrictions, sharp turns and protruding obstacles, and the species examined were found to have profoundly different responses in terms of foraging range and persistence, spatial exploration and ability to pass obstacles. Hyphal behaviour was not predictable solely based on ecological assumptions, and our results obtained a level of trait information at the hyphal scale that cannot be fully explained using classical concepts of space exploration and exploitation such as the phalanx/guerrilla strategies. Instead, we propose a multivariate trait analysis, acknowledging the complex trade-offs and microscale strategies that fungal mycelia exhibit. Our results provide novel insights about hyphal behaviour, as well as an additional understanding of fungal habitat colonisation, their foraging strategies and niche partitioning in the soil environment.
  •  
3.
  • Arellano-Caicedo, Carlos, et al. (författare)
  • Habitat complexity affects microbial growth in fractal maze
  • 2023
  • Ingår i: Current biology : CB. - : Elsevier BV. - 1879-0445 .- 0960-9822. ; 33:8, s. 4-1458
  • Tidskriftsartikel (refereegranskat)abstract
    • The great variety of earth's microorganisms and their functions are attributed to the heterogeneity of their habitats, but our understanding of the impact of this heterogeneity on microbes is limited at the microscale. In this study, we tested how a gradient of spatial habitat complexity in the form of fractal mazes influenced the growth, substrate degradation, and interactions of the bacterial strain Pseudomonas putida and the fungal strain Coprinopsis cinerea. These strains responded in opposite ways: complex habitats strongly reduced fungal growth but, in contrast, increased the abundance of bacteria. Fungal hyphae did not reach far into the mazes and forced bacteria to grow in deeper regions. Bacterial substrate degradation strongly increased with habitat complexity, even more than bacterial biomass, up to an optimal depth, while the most remote parts of the mazes showed both decreased biomass and substrate degradation. These results suggest an increase in enzymatic activity in confined spaces, where areas may experience enhanced microbial activity and resource use efficiency. Very remote spaces showing a slower turnover of substrates illustrate a mechanism which may contribute to the long-term storage of organic matter in soils. We demonstrate here that the sole effect of spatial microstructures affects microbial growth and substrate degradation, leading to differences in local microscale spatial availability. These differences might add up to considerable changes in nutrient cycling at the macroscale, such as contributing to soil organic carbon storage.
  •  
4.
  • Arellano-Caicedo, Carlos, et al. (författare)
  • Habitat geometry in artificial microstructure affects bacterial and fungal growth, interactions, and substrate degradation
  • 2021
  • Ingår i: Communications Biology. - : Springer Science and Business Media LLC. - 2399-3642. ; 4:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Microhabitat conditions determine the magnitude and speed of microbial processes but have been challenging to investigate. In this study we used microfluidic devices to determine the effect of the spatial distortion of a pore space on fungal and bacterial growth, interactions, and substrate degradation. The devices contained channels differing in bending angles and order. Sharper angles reduced fungal and bacterial biomass, especially when angles were repeated in the same direction. Substrate degradation was only decreased by sharper angles when fungi and bacteria were grown together. Investigation at the cellular scale suggests that this was caused by fungal habitat modification, since hyphae branched in sharp and repeated turns, blocking the dispersal of bacteria and the substrate. Our results demonstrate how the geometry of microstructures can influence microbial activity. This can be transferable to soil pore spaces, where spatial occlusion and microbial feedback on microstructures is thought to explain organic matter stabilization.
  •  
5.
  • Arellano-Caicedo, Carlos, et al. (författare)
  • Quantification of growth and nutrient consumption of bacterial and fungal cultures in microfluidic microhabitat models
  • 2024
  • Ingår i: STAR Protocols. - 2666-1667. ; 5:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Understanding microbes in nature requires consideration of their microenvironment. Here, we present a protocol for quantifying biomass and nutrient degradation of bacterial and fungal cultures (Pseudomonas putida and Coprinopsis cinerea, respectively) in microfluidics. We describe steps for mask design and fabrication, master printing, polydimethylsiloxane chip fabrication, and chip inoculation and imaging using fluorescence microscopy. We include procedures for image analysis, plotting, and statistics. For complete details on the use and execution of this protocol, please refer to Arellano-Caicedo et al. (2023).1
  •  
6.
  • Barin, Mohsen, et al. (författare)
  • Optimization of Biofertilizer Formulation for Phosphorus Solubilizing by Pseudomonas fluorescens Ur21 via Response Surface Methodology
  • 2022
  • Ingår i: Processes. - : MDPI AG. - 2227-9717. ; 10:4
  • Tidskriftsartikel (refereegranskat)abstract
    • This study aimed to analyze and quantify the effect of different ratios of vermicompost, phosphate rock, and sulfur on P solubilization and release by Pseudomonas fluorescens Ur21, and to identify optimal levels of those variables for an efficient biofertilizer. Twenty experiments were defined by surface response methodology based on a central composite design (CCD), and the effects of various quantities of vermicompost, phosphate rock, and sulfur (encoded by −1, 0, or +1) on P solubilization was explored. The results show that the CCD model had high efficiency for predicting P solubilization (R2 = 0.9035). The strongest effects of the included variables on the observed P solubilization were linear effects of sulfur and organic matter (vermicompost), a quadratic effect of phosphate rock, and an interactive effect of organic matter × phosphate rock. Statistical analysis of the coefficients in the CCD model revealed that vermicompost, vermicompost × phosphate rock, and phosphate rock × phosphate rock treatments increased P solubilization. The optimal predicted composition for maximal P solubilization by P. fluorescens Ur21 (at 1684.39 mg·kg−1, with more than 90% of the added phosphate dissolved) was 58.8% vermicompost, 35.3% phosphate rock, and 5.8% sulfur. ANOVA analysis confirmed the model’s accuracy and validity in terms of F value (10.41), p value (<0.001), and non-significant lack of fit.
  •  
7.
  • Camenzind, Tessa, et al. (författare)
  • Arbuscular mycorrhizal fungal and soil microbial communities in African Dark Earths
  • 2018
  • Ingår i: FEMS Microbiology Ecology. - : Oxford University Press (OUP). - 0168-6496 .- 1574-6941. ; 94:4
  • Tidskriftsartikel (refereegranskat)abstract
    • The socio-economic values of fertile and carbon-rich Dark Earth soils are well described from the Amazon region. Very recently, Dark Earth soils were also identified in tropical West Africa, with comparable beneficial soil properties and plant growth-promoting effects. The impact of this management technique on soil microbial communities, however, is less well understood, especially with respect to the ecologically relevant group of arbuscular mycorrhizal (AM) fungi. Thus, we tested the hypotheses that (1) improved soil quality in African Dark Earth (AfDE) will increase soil microbial biomass and shift community composition and (2) concurrently increased nutrient availability will negatively affect AM fungal communities. Microbial communities were distinct in AfDE in comparison to adjacent sites, with an increased fungal:bacterial ratio of 71%, a pattern mainly related to shifts in pH. AM fungal abundance and diversity, however, did not differ despite clearly increased soil fertility in AfDE, with 3.7 and 1.7 times greater extractable P and total N content, respectively. The absence of detrimental effects on AM fungi, often seen following applications of inorganic fertilizers, and the enhanced role of saprobic fungi relevant for mineralization and C sequestration support previous assertions of this management type as a sustainable alternative agricultural practice.
  •  
8.
  • Caruso, Tancredi, et al. (författare)
  • Assessing soil ecosystem processes – biodiversity relationships in a nature reserve in Central Europe
  • 2018
  • Ingår i: Plant and Soil. - : Springer Science and Business Media LLC. - 0032-079X .- 1573-5036. ; 424:1-2, s. 491-501
  • Tidskriftsartikel (refereegranskat)abstract
    • Background and aims: Plant diversity – ecosystem processes relationships are essential to our understanding of ecosystem functioning. We aimed at disentangling the nature of such relationships in a mesotrophic grassland that was highly heterogeneous with regards to nutrient availability. Methods: Rather than targeting primary productivity, like most existing reports do, we focused our study on belowground ecosystem processes. We tested three, largely mutually exclusive, hypotheses of ecosystem processes relationships: the redundancy hypothesis, the insurance hypothesis and the centrifugal model hypothesis. We sampled the grassland twice within a single plant growing season in a spatially explicit way and assayed the soil for nitrification, urease activity, relative bacterial activity and a microbial community profile based on respiration while we simultaneously assessed plant diversity. Results: Results supported the centrifugal model. We justify the lack of support for the other two hypotheses on the basis of having conducted an observational study in an environmentally heterogeneous site. Conclusions: The centrifugal model hypothesis appears to be a very good predictive model for explaining diversity in observational, heterogeneous studies. The specific study represents one of the few observational studies that consider measures of ecosystem functioning other than primary productivity.
  •  
9.
  • Hammer, Edith, et al. (författare)
  • A mycorrhizal fungus grows on biochar and captures phosphorus from its surfaces
  • 2014
  • Ingår i: Soil Biology & Biochemistry. - : Elsevier BV. - 0038-0717. ; 77, s. 252-260
  • Tidskriftsartikel (refereegranskat)abstract
    • Biochar application to soils has potential to simultaneously improve soil fertility and store carbon to aid climate change mitigation. While many studies have shown positive effects on plant yields, much less is known about the synergies between biochar and plant growth promoting microbes, such as mycorrhizal fungi. We present the first evidence that arbuscular mycorrhizal (AM) fungi can use biochar as a physical growth matrix and nutrient source. We used monoxenic cultures of the AM fungus Rhizophagus irregularis in symbiosis with carrot roots. Using scanning electron microscopy we observed that AM fungal hyphae grow on and into two contrasting types of biochar particles, strongly attaching to inner and outer surfaces. Loading a nutrient-poor biochar surface with nutrients stimulated hyphal colonization. We labeled biochar surfaces with P-33 radiotracer and found that hyphal contact to the biochar surfaces permitted uptake of P-33 and its subsequent translocation to the associated host roots. Direct access of fungal hyphae to biochar surfaces resulted in six times more P-33 translocation to the host roots than in systems where a mesh prevented hyphal contact with the biochar. We conclude that AM fungal hyphae access microsites within biochar, that are too small for most plant roots to enter (<10 mu m), and can hence mediate plant phosphorus uptake from the biochar. Thus, combined management of biochar and AM fungi could contribute to sustainable soil and climate management by providing both a carbon-stable nutrient reservoir and a symbiont that facilitates nutrient uptake from it. (C) 2014 Elsevier Ltd. All rights reserved.
  •  
10.
  • Hammer, Edith, et al. (författare)
  • Biochar increases arbuscular mycorrhizal plant growth enhancement and ameliorates salinity stress
  • 2015
  • Ingår i: Applied Soil Ecology. - : Elsevier BV. - 0929-1393. ; 96, s. 114-121
  • Tidskriftsartikel (refereegranskat)abstract
    • We examined combined effects of biochar, arbuscular mycorrhizal (AM) fungi and salinity on plant growth and physiology to test whether and how biochar influences AM fungi mediated growth and nutrition enhancements, and whether and how biochar provides amelioration in salt stressed soils. We carried out a full three-factorial greenhouse experiment with Lactuca sativa; and a second study with a wider range of biochar and salt additions to examine physicochemical effects on soil parameters. Biochar together with AM fungal inoculation resulted in an additional plant yield increase compared to each alone under non-saline conditions. In parallel with increased plant growth, we found increased uptake of P and Mn with AM fungi and biochar addition, but to a lesser extent than biochar-induced growth promotion. Both factors, but especially biochar alleviated salinity-caused growth depressions, and improved Na/K ratio in salinity stressed plants. Reduced Na uptake of plants and reduced conductivity in biochar-ameliorated soils suggest that a likely mechanism involves ion adsorption to biochar surfaces. Our results suggest that plants depend on symbiotic microorganisms to fully exploit biochar benefits in soils, suggesting avenues for joint management in agriculture. Biochar may be advantageous in saline soils, but long-term studies are required before recommendations should be given. (C) 2015 Elsevier B.V. All rights reserved.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 40

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy