SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Hartsock Robert) "

Sökning: WFRF:(Hartsock Robert)

  • Resultat 1-10 av 17
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Biasin, Elisa, et al. (författare)
  • Anisotropy enhanced X-ray scattering from solvated transition metal complexes
  • 2018
  • Ingår i: Journal of Synchrotron Radiation. - 0909-0495. ; 25:2, s. 306-315
  • Tidskriftsartikel (refereegranskat)abstract
    • Time-resolved X-ray scattering patterns from photoexcited molecules in solution are in many cases anisotropic at the ultrafast time scales accessible at X-ray free-electron lasers (XFELs). This anisotropy arises from the interaction of a linearly polarized UV-Vis pump laser pulse with the sample, which induces anisotropic structural changes that can be captured by femtosecond X-ray pulses. In this work, a method for quantitative analysis of the anisotropic scattering signal arising from an ensemble of molecules is described, and it is demonstrated how its use can enhance the structural sensitivity of the time-resolved X-ray scattering experiment. This method is applied on time-resolved X-ray scattering patterns measured upon photoexcitation of a solvated di-platinum complex at an XFEL, and the key parameters involved are explored. It is shown that a combined analysis of the anisotropic and isotropic difference scattering signals in this experiment allows a more precise determination of the main photoinduced structural change in the solute, i.e. the change in Pt - Pt bond length, and yields more information on the excitation channels than the analysis of the isotropic scattering only. Finally, it is discussed how the anisotropic transient response of the solvent can enable the determination of key experimental parameters such as the instrument response function.The analysis of time-resolved X-ray scattering patterns collected at an XFEL upon photoexcitation of a di-platinum complex in solution is described. The analysis quantitatively considers the anisotropy of the signal.
  •  
2.
  • Biasin, Elisa, et al. (författare)
  • Femtosecond X-Ray Scattering Study of Ultrafast Photoinduced Structural Dynamics in Solvated[Co(terpy)2]2$
  • 2016
  • Ingår i: Physical Review Letters. - : American Physical Society (APS). - 1079-7114 .- 0031-9007. ; 117:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We study the structural dynamics of photoexcited [Co(terpy)2]2+ in an aqueous solution with ultrafast x-ray diffuse scattering experiments conducted at the Linac Coherent Light Source. Through direct comparisons with density functional theory calculations, our analysis shows that the photoexcitation event leads to elongation of the Co-N bonds, followed by coherent Co-N bond length oscillations arising from the impulsive excitation of a vibrational mode dominated by the symmetrical stretch of all six Co-N bonds. This mode has a period of 0.33 ps and decays on a subpicosecond time scale. We find that the equilibrium bond-elongated structure of the high spin state is established on a single-picosecond time scale and that this state has a lifetime of ∼7 ps.
  •  
3.
  • Haldrup, Kristoffer, et al. (författare)
  • Ultrafast X-Ray Scattering Measurements of Coherent Structural Dynamics on the Ground-State Potential Energy Surface of a Diplatinum Molecule
  • 2019
  • Ingår i: Physical Review Letters. - 0031-9007. ; 122:6
  • Tidskriftsartikel (refereegranskat)abstract
    • We report x-ray free electron laser experiments addressing ground-state structural dynamics of the diplatinum anion Pt2POP4 following photoexcitation. The structural dynamics are tracked with <100 fs time resolution by x-ray scattering, utilizing the anisotropic component to suppress contributions from the bulk solvent. The x-ray data exhibit a strong oscillatory component with period 0.28 ps and decay time 2.2 ps, and structural analysis of the difference signal directly shows this as arising from ground-state dynamics along the PtPt coordinate. These results are compared with multiscale Born-Oppenheimer molecular dynamics simulations and demonstrate how off-resonance excitation can be used to prepare a vibrationally cold excited-state population complemented by a structure-dependent depletion of the ground-state population which subsequently evolves in time, allowing direct tracking of ground-state structural dynamics.
  •  
4.
  • Kjær, Kasper S., et al. (författare)
  • Finding intersections between electronic excited state potential energy surfaces with simultaneous ultrafast X-ray scattering and spectroscopy
  • 2019
  • Ingår i: Chemical Science. - : Royal Society of Chemistry (RSC). - 2041-6520 .- 2041-6539. ; 10:22, s. 5749-5760
  • Tidskriftsartikel (refereegranskat)abstract
    • Light-driven molecular reactions are dictated by the excited state potential energy landscape, depending critically on the location of conical intersections and intersystem crossing points between potential surfaces where non-adiabatic effects govern transition probabilities between distinct electronic states. While ultrafast studies have provided significant insight into electronic excited state reaction dynamics, experimental approaches for identifying and characterizing intersections and seams between electronic states remain highly system dependent. Here we show that for 3d transition metal systems simultaneously recorded X-ray diffuse scattering and X-ray emission spectroscopy at sub-70 femtosecond time-resolution provide a solid experimental foundation for determining the mechanistic details of excited state reactions. In modeling the mechanistic information retrieved from such experiments, it becomes possible to identify the dominant trajectory followed during the excited state cascade and to determine the relevant loci of intersections between states. We illustrate our approach by explicitly mapping parts of the potential energy landscape dictating the light driven low-to-high spin-state transition (spin crossover) of [Fe(2,2′-bipyridine)3]2+, where the strongly coupled nuclear and electronic dynamics have been a source of interest and controversy. We anticipate that simultaneous X-ray diffuse scattering and X-ray emission spectroscopy will provide a valuable approach for mapping the reactive trajectories of light-triggered molecular systems involving 3d transition metals.
  •  
5.
  • Kjær, Kasper S., et al. (författare)
  • Ligand manipulation of charge transfer excited state relaxation and spin crossover in [Fe(2,2'-bipyridine)2(CN)2]
  • 2017
  • Ingår i: Structural Dynamics. - : AIP Publishing. - 2329-7778. ; 4:4
  • Tidskriftsartikel (refereegranskat)abstract
    • We have used femtosecond resolution UV-visible and Kβ x-ray emission spectroscopy to characterize the electronic excited state dynamics of [Fe(bpy)2(CN)2], where bpy=2,20-bipyridine, initiated by metal-to-ligand charge transfer (MLCT) excitation. The excited-state absorption in the transient UV-visible spectra, associated with the 2,20-bipyridine radical anion, provides a robust marker for the MLCT excited state, while the transient Kβ x-ray emission spectra provide a clear measure of intermediate and high spin metal-centered excited states. From these measurements, we conclude that the MLCT state of [Fe(bpy)2(CN)2] undergoes ultrafast spin crossover to a metalcentered quintet excited state through a short lived metal-centered triplet transient species. These measurements of [Fe(bpy)2(CN)2] complement prior measurement performed on [Fe(bpy)3]2+ and [Fe(bpy)(CN)4]2- in dimethylsulfoxide solution and help complete the chemical series [Fe(bpy)N(CN)6-2N]2N-4, whereN=1-3. The measurements confirm that simple ligand modifications can significantly change the relaxation pathways and excited state lifetimes and support the further investigation of light harvesting and photocatalytic applications of 3d transition metal complexes.
  •  
6.
  • Kjær, Kasper S., et al. (författare)
  • Solvent control of charge transfer excited state relaxation pathways in [Fe(2,2′-bipyridine)(CN)4]2-
  • 2018
  • Ingår i: Physical Chemistry Chemical Physics. - : Royal Society of Chemistry (RSC). - 1463-9076 .- 1463-9084. ; 20:6, s. 4238-4249
  • Tidskriftsartikel (refereegranskat)abstract
    • The excited state dynamics of solvated [Fe(bpy)(CN)4]2-, where bpy = 2,2′-bipyridine, show significant sensitivity to the solvent Lewis acidity. Using a combination of optical absorption and X-ray emission transient spectroscopies, we have previously shown that the metal to ligand charge transfer (MLCT) excited state of [Fe(bpy)(CN)4]2- has a 19 picosecond lifetime and no discernable contribution from metal centered (MC) states in weak Lewis acid solvents, such as dimethyl sulfoxide and acetonitrile.1,2 In the present work, we use the same combination of spectroscopic techniques to measure the MLCT excited state relaxation dynamics of [Fe(bpy)(CN)4]2- in water, a strong Lewis acid solvent. The charge-transfer excited state is now found to decay in less than 100 femtoseconds, forming a quasi-stable metal centered excited state with a 13 picosecond lifetime. We find that this MC excited state has triplet (3MC) character, unlike other reported six-coordinate Fe(ii)-centered coordination compounds, which form MC quintet (5MC) states. The solvent dependent changes in excited state non-radiative relaxation for [Fe(bpy)(CN)4]2- allows us to infer the influence of the solvent on the electronic structure of the complex. Furthermore, the robust characterization of the dynamics and optical spectral signatures of the isolated 3MC intermediate provides a strong foundation for identifying 3MC intermediates in the electronic excited state relaxation mechanisms of similar Fe-centered systems being developed for solar applications.
  •  
7.
  • Koroidov, Sergey, et al. (författare)
  • Probing the Electron Accepting Orbitals of Ni-Centered Hydrogen Evolution Catalysts with Noninnocent Ligands by Ni L-Edge and S K-Edge X-ray Absorption
  • 2018
  • Ingår i: Inorganic Chemistry. - : AMER CHEMICAL SOC. - 0020-1669 .- 1520-510X. ; 57:21, s. 13167-13175
  • Tidskriftsartikel (refereegranskat)abstract
    • The valence electronic structure of several square planar Ni-centered complexes, previously shown to catalyze the hydrogen evolution reaction, are characterized using S K-edge and Ni L-edge X-ray absorption spectroscopy and electronic structure calculations. Measurement of the atomic Ni 3d and S 3p contributions enables assessment of the metal-ligand covalency of the electron accepting valence orbitals and yields insight into the ligand-dependent reaction mechanisms proposed for the catalysts. The electron accepting orbital of the Ni(abt)(2) (abt = 2-aminobenzenethiolate) catalyst is found to have large ligand character (80%), with only 9% S 3p (per S) character, indicating delocalization over the entire abt ligand. Upon two proton-coupled reductions to form the Ni(abt-H)(2) intermediate, the catalyst stores 1.8 electrons on the abt ligand, and the ligand N atoms are protonated, thus supporting its role as an electron and proton reservoir. The electron accepting orbitals of the Ni(abt-H)(2) intermediate and Ni(mpo)(2) (mpo = 2-mercaptopyridyl-N-oxide) catalyst are found to have considerably larger Ni 3d (46-47%) and S 3p (17-18% per S) character, consistent with an orbital localized on the metal-ligand bonds. This finding supports the possibility of metal-based chemistry, resulting in Ni-H bond formation for the reduced Ni(abt-H)(2) intermediate and Ni(mpo)(2) catalyst, a critical reaction intermediate in H-2 generation.
  •  
8.
  • Kunnus, Kristjan, et al. (författare)
  • A setup for resonant inelastic soft x-ray scattering on liquids at free electron laser light sources
  • 2012
  • Ingår i: Review of Scientific Instruments. - : AIP Publishing. - 1089-7623 .- 0034-6748. ; 83:12
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a flexible and compact experimental setup that combines an in vacuum liquid jet with an x-ray emission spectrometer to enable static and femtosecond time-resolved resonant inelastic soft x-ray scattering (RIXS) measurements from liquids at free electron laser (FEL) light sources. We demonstrate the feasibility of this type of experiments with the measurements performed at the Linac Coherent Light Source FEL facility. At the FEL we observed changes in the RIXS spectra at high peak fluences which currently sets a limit to maximum attainable count rate at FELs. The setup presented here opens up new possibilities to study the structure and dynamics in liquids. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4772685]
  •  
9.
  • Kunnus, Kristjan, et al. (författare)
  • Anti-Stokes resonant x-ray Raman scattering for atom specific and excited state selective dynamics
  • 2016
  • Ingår i: New Journal of Physics. - : IOP Publishing. - 1367-2630. ; 18
  • Tidskriftsartikel (refereegranskat)abstract
    • Ultrafast electronic and structural dynamics of matter govern rate and selectivity of chemical reactions, as well as phase transitions and efficient switching in functional materials. Since x-rays determine electronic and structural properties with elemental, chemical, orbital and magnetic selectivity, short pulse x-ray sources have become central enablers of ultrafast science. Despite of these strengths, ultrafast x-rays have been poor at picking up excited state moieties from the unexcited ones. With time-resolved anti-Stokes resonant x-ray Raman scattering (AS-RXRS) performed at the LCLS, and ab initio theory we establish background free excited state selectivity in addition to the elemental, chemical, orbital and magnetic selectivity of x-rays. This unparalleled selectivity extracts low concentration excited state species along the pathway of photo induced ligand exchange of Fe(CO)(5) in ethanol. Conceptually a full theoretical treatment of all accessible insights to excited state dynamics with AS-RXRS with transform-limited x-ray pulses is given-which will be covered experimentally by upcoming transform-limited x-ray sources.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 17

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy