SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Hoffmann Inga 1984 ) "

Sökning: WFRF:(Hoffmann Inga 1984 )

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Hoffmann, Inga, 1984- (författare)
  • Discovery of Novel Fatty Acid Dioxygenases and Cytochromes P450 : Mechanisms of Oxylipin Biosynthesis in Pathogenic Fungi
  • 2013
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Dioxygenase-cytochrome P450 (DOX-CYP) fusion enzymes are present in diverse human and plant pathogenic fungi. They oxygenate fatty acids to lipid mediators which have regula­tory functions in fungal development and toxin production. These enzymes catalyze the for­mation of fatty acid hy­droperoxides which are subsequently converted by the P450 activities or reduced to the corresponding alcohols. The N-terminal DOX domains show catalytic and structural homology to mammalian cyclooxygenases, which belong to the most thoroughly studied human enzymes.7,8-Linoleate diol synthase (LDS) of the plant pathogenic fungus Gaeumannomyces graminis was the first characterized member of the DOX-CYP fusion enzyme family. It catalyzes the conversion of linoleic acid to 8R-hydroperoxylinoleic acid (HPODE) and subse­quently to 7S,8S-dihy­droxylinoleic acid by its DOX and P450 domains, respectively. By now, several enzymes with homology to 7,8-LDS have been identified in im­portant fungi, e.g., psi fac­tor-producing oxygenase (ppo)A, ppoB, and ppoC, of Aspergillus nidulans and A. fumigatus.By cloning and recombinant expression, ppoA of A. fumigatus was identi­fied as 5,8-LDS. Partial expression of the 8R-DOX domains of 5,8-LDS of A. fumigatus and 7,8-LDS of G. graminis yielded active protein which demonstrates that the DOX activities of LDS are independent of their P450 domains. The latter domains were shown to contain a conserved motif with catalytically important amide residues. As judged by site-directed mutagene­sis studies, 5,8- and 7,8-LDS seem to facilitate heterolytic cleavage of the oxygen-oxygen bond of 8R-HPODE by aid of a glutamine and an asparagine residue, respectively.Cloning and expression of putative DOX-CYP fusion proteins of A. terreus and Fusarium oxysporum led to the discovery of novel enzyme activities, e.g., linoleate 9S-DOX and two allene oxide synthases (AOS), specific for 9R- and 9S-HPODE, respectively. The fungal AOS are present in the P450 domains of two DOX-CYP fusion enzymes and show higher se­quence homology to LDS than to plant AOS and constitute therefore a novel class of AOS.In summary, this thesis describes the discovery of novel fatty acid oxy­genases of human and plant pathogenic fungi and the characterization of their reaction mechanisms.
  •  
2.
  • Hoffmann, Inga, 1984-, et al. (författare)
  • Expression of 5,8-LDS of Aspergillus fumigatus and its dioxygenase domain : a comparison with 7,8-LDS, 10-dioxygenase, and cyclooxygenase
  • 2011
  • Ingår i: Archives of Biochemistry and Biophysics. - : Elsevier BV. - 0003-9861 .- 1096-0384. ; 506:2, s. 216-222
  • Tidskriftsartikel (refereegranskat)abstract
    • 5,8-Linoleate diol synthase (5,8-LDS) of Aspergillus fumigatus was cloned, expressed, and compared with 7,8-LDS of the Take-all fungus. Replacements of Tyr and Cys in the conserved YRWH and FXXGPHXCLG sequences abolished 8R-dioxygenase (8-DOX) and hydroperoxide isomerase activities, respectively. The predicted α-helices of LDS were aligned with α-helices of cyclooxygenase-1 (COX-1) to identify the 8-DOX domains. N-terminal expression constructs of 5,8- and 7,8-LDS (674 of 1079, and 673 of 1165 residues), containing one additional α-helix compared to cyclooxygenase-1, yielded prominent 8R-DOX activities with apparently unchanged or slightly lower substrate affinities, respectively. Val-328 of 5,8-LDS did not influence the position of oxygenation in contrast to the homologous residues Val-349 of COX-1 and Leu-384 of 10R-dioxygenase. We conclude that ∼675 amino acids are sufficient to support 8-DOX activity.
  •  
3.
  • Hoffmann, Inga, 1984-, et al. (författare)
  • Novel insights into cyclooxygenases, linoleate diol synthases, and lipoxygenases from deuterium kinetic isotope effects and oxidation of substrate analogs
  • 2012
  • Ingår i: Biochimica et Biophysica Acta - Molecular and Cell Biology of Lipids. - : Elsevier BV. - 1388-1981 .- 1879-2618. ; 1821:12, s. 1508-1517
  • Tidskriftsartikel (refereegranskat)abstract
    • Cyclooxygenases (COX) and 8R-dioxygenase (8R-DOX) activities of linoleate diol synthases (LDS) are homologous heme-dependent enzymes that oxygenate fatty acids by a tyrosyl radical-mediated hydrogen abstraction and antarafacial insertion of O2. Soybean lipoxygenase-1 (sLOX-1) contains non-heme iron and oxidizes 18:2n-6 with a large deuterium kinetic isotope effect (D-KIE). The aim of the present work was to obtain further mechanistic insight into the action of these enzymes by using a series of n-6 and n-9 fatty acids and by analysis of D-KIE. COX-1 oxidized C20 and C18 fatty acids in the following order of rates: 20:2n-6 > 20:1n-6 > 20:3n-9 > 20:1n-9 and 18:3n-3 ≥ 18:2n-6 > 18:1n-6. 18:2n-6 and its geometrical isomer (9E,12Z)18:2 were both mainly oxygenated at C-9 by COX-1, but the 9Z,12E isomer was mostly oxygenated at C-13. A cis-configured double bond in the n-6 position therefore seems important for substrate positioning. 8R-DOX oxidized (9Z,12E)18:2 at C-8 in analogy with 18:2n-6, but the 9E,12Z isomer was only subject to hydrogen abstraction at C-11 and oxygen insertion at C-9 by 8R-DOX of 5,8-LDS. sLOX-1 and 13R-MnLOX oxidized [11S-2H]18:2n-6 with similar D-KIE (~53), which implies that the catalytic metals did not alter the D-KIE. Oxygenation of 18:2n-6 by COX-1 and COX-2 took place with a D-KIE of 3-5 as probed by incubations of [11,11-2H2]- and [11S-2H]18:2n-6. In contrast, the more energetically demanding hydrogen abstractions of the allylic carbons of 20:1n-6 by COX-1 and 18:1n-9 by 8R-DOX were both accompanied by large D-KIE (>20).
  •  
4.
  • Oliw, Ernst H., 1948-, et al. (författare)
  • Manganese lipoxygenase oxidizes bis-allylic hydroperoxides and octadecenoic acids by different mechanisms
  • 2011
  • Ingår i: Biochimica et Biophysica Acta - Molecular and Cell Biology of Lipids. - : Elsevier BV. - 1388-1981 .- 1879-2618. ; 1811:3, s. 138-147
  • Tidskriftsartikel (refereegranskat)abstract
    • Manganese lipoxygenase (MnLOX) oxidizes (11R)-hydroperoxylinolenic acid (11R-HpOTrE) to a peroxyl radical. Our aim was to compare the enzymatic oxidation of 11R-HpOTrE and octadecenoic acids with LOO-H and allylic C-H bond dissociation enthalpies of ~88 and ~87kcal/mol. Mn(III)LOX oxidized (11Z)-, (12Z)-, and (13Z)-18:1 to hydroperoxides with R configuration, but this occurred at insignificant rates (<1%) compared to 11R-HpOTrE. We next examined whether transitional metals could mimic this oxidation. Ce(4+) and Mn(3+) transformed 11R-HpOTrE to hydroperoxides at C-9 and C-13 via oxidation to a peroxyl radical at C-11, whereas Fe(3+) was a poor catalyst. Our results suggest that MnLOX oxidizes bis-allylic hydroperoxides to peroxyl radicals in analogy with Ce(4+) and Mn(3+). The enzymatic oxidation likely occurs by proton-coupled electron transfer of the electron from the hydroperoxide anion to Mn(III) and H(+) to the catalytic base, Mn(III)OH(-). Hydroperoxides abolish the kinetic lag times of MnLOX and FeLOX by oxidation of their metal centers, but 11R-HpOTrE was isomerized by MnLOX to (13R)-hydroperoxy-(9Z,11E,15Z)-octadecatrienoic acid (13R-HpOTrE) with a kinetic lag time. This lag time could be explained by two competing transformations, dehydration of 11R-HpOTrE to 11-ketolinolenic acid and oxidation of 11R-HpOTrE to peroxyl radical; the reaction rate then increases as 13R-HpOTrE oxidizes MnLOX with subsequent formation of two epoxyalcohols. We conclude that oxidation of octadecenoic acids and bis-allylic hydroperoxides occurs by different mechanisms, which likely reflect the nature of the hydrogen bonds, steric factors, and the redox potential of the Mn(III) center.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy