SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Isoya Junichi) "

Sökning: WFRF:(Isoya Junichi)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Beyer, Franziska, et al. (författare)
  • Metastable defects in low-energy electron irradiated n-type 4H-SiC
  • 2010
  • Ingår i: Materials Science Forum, Vols. 645-648. - : Trans Tech Publications. ; , s. 435-438
  • Konferensbidrag (refereegranskat)abstract
    • After low-energy electron irradiation of epitaxial n-type 4H-SiC, the DUES peak amplitudes. of the defects Z(1/2) and EH6/7, which were already observed in as-grown layers, increased and the commonly found peaks EH1 and EH3 appeared. The bistable M-center, previously seen in high-energy proton implanted 4H-SiC, was detected. New bistable defects, the EB-centers, evolved after annealing out of the M-center, and EF3. The reconfiguration energies for one of the two EB-centers were determined to be about 0.96 eV for both transitions: from configuration I to II and from configuration II to I. Since low-energy electron irradiation (less than220 keV) affects mainly the carbon atom in SiC, both the M- and EB-centers are likely to be carbon related defects.
  •  
2.
  • Beyer, Franziska, et al. (författare)
  • Observation of Bistable Defects in Electron Irradiated N-Type 4H-SiC
  • 2011
  • Ingår i: <em>Materials Science Forum Vols. 679-680 (2011) pp 249-252</em>. - : Trans Tech Publications Inc.. ; , s. 249-252
  • Konferensbidrag (refereegranskat)abstract
    • DLTS measurements show bistable behavior of the previously reported EH5 peak in low- and high-energy electron irradiation 4H-SiC. Both reconfiguration processes (A ! B and B ! A) take place above 700 ±C. By isothermal annealing, the reconfiguration rates were determined and the reconfiguration energy was calculated to EA = 2.4±0.2 eV. Since the defect is present already after low-energy electron irradiation, which mainly affects the C atom in SiC, the EH5 peak may be related to defects associated with C-vacancies or C-interstitials.
  •  
3.
  • Ivády, Viktor, et al. (författare)
  • Photoluminescence at the ground-state level anticrossing of the nitrogen-vacancy center in diamond: A comprehensive study
  • 2021
  • Ingår i: Physical Review B. - : AMER PHYSICAL SOC. - 2469-9950 .- 2469-9969. ; 103:3
  • Tidskriftsartikel (refereegranskat)abstract
    • The nitrogen-vacancy center (NV center) in diamond at magnetic fields corresponding to the ground-state level anticrossing (GSLAC) region gives rise to rich photoluminescence (PL) signals due to the vanishing energy gap between the electron spin states, which enables for a broad variety of environmental couplings to have an effect on the NV centers luminescence. Previous works have addressed several aspects of the GSLAC photoluminescence, however, a comprehensive analysis of the GSLAC signature of NV ensembles in different spin environments at various external fields is missing. Here we employ a combination of experiments and recently developed numerical methods to investigate in detail the effects of transverse electric and magnetic fields, strain, P1 centers, NV centers, and the C-13 nuclear spins on the GSLAC photoluminescence. Our comprehensive analysis provides a solid ground for advancing various microwave-free applications at the GSLAC, including but not limited to magnetometry, spectroscopy, dynamic nuclear polarization (DNP), and nuclear magnetic resonance (NMR) detection. We demonstrate that not only the most abundant (NV)-N-14 center but the (NV)-N-15 can also be utilized in such applications.
  •  
4.
  • Niethammer, Matthias, et al. (författare)
  • Coherent electrical readout of defect spins in silicon carbide by photo-ionization at ambient conditions
  • 2019
  • Ingår i: Nature Communications. - : NATURE PUBLISHING GROUP. - 2041-1723. ; 10
  • Tidskriftsartikel (refereegranskat)abstract
    • Quantum technology relies on proper hardware, enabling coherent quantum state control as well as efficient quantum state readout. In this regard, wide-bandgap semiconductors are an emerging material platform with scalable wafer fabrication methods, hosting several promising spin-active point defects. Conventional readout protocols for defect spins rely on fluorescence detection and are limited by a low photon collection efficiency. Here, we demonstrate a photo-electrical detection technique for electron spins of silicon vacancy ensembles in the 4H polytype of silicon carbide (SiC). Further, we show coherent spin state control, proving that this electrical readout technique enables detection of coherent spin motion. Our readout works at ambient conditions, while other electrical readout approaches are often limited to low temperatures or high magnetic fields. Considering the excellent maturity of SiC electronics with the outstanding coherence properties of SiC defects, the approach presented here holds promises for scalability of future SiC quantum devices.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy