SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Iwakura Yoichiro) "

Sökning: WFRF:(Iwakura Yoichiro)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ali, Abukar, 1988, et al. (författare)
  • Antibiotic-killed Staphylococcus aureus induces destructive arthritis in mice.
  • 2015
  • Ingår i: Arthritis & rheumatology (Hoboken, N.J.). - : Wiley. - 2326-5205 .- 2326-5191. ; 67:1, s. 107-116
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective: Permanent reduction in joint function is a severe post-infectious complication in patients with Staphylococcus aureus septic arthritis. This reduction in joint function might be caused by persistent joint inflammation after the adequate eradication of bacteria by antibiotics. Methods: We studied whether antibiotic-killed S. aureus induced joint inflammation in mice and elucidated the molecular and cellular mechanism of this type of arthritis. Results: The intraarticular injection of antibiotic-killed S. aureus induced mild to moderate synovitis and bone erosions that lasted for a minimum of 14 days. The frequency and severity of synovitis were significantly reduced in tumor necrosis factor receptor 1 (TNFR1), receptor for Advanced Glycation End Products (RAGE), and toll like receptor 2 (TLR2) knockout mice compared with wild-type animals. The combined depletion of monocytes and neutrophils resulted in a significantly lower frequency of synovitis. Among bacterial factors, insoluble cell debris played a more important role than bacterial DNA or soluble components in inducing joint inflammation. Importantly, anti-TNF therapy abrogated the joint inflammation induced by antibiotic-killed S. aureus. Conclusion: Antibiotic-killed S. aureus induced and maintained the joint inflammation that is mediated through TLR2, TNFR1, and RAGE receptor. The cross-talk between neutrophils and monocytes is responsible for this type of arthritis. Anti-TNF therapy might be used as a novel therapeutic strategy, in combination with antibiotics, to treat staphylococcal septic arthritis. © 2014 American College of Rheumatology.
  •  
2.
  • Hedtjärn, Maj, 1973, et al. (författare)
  • Combined deficiency of IL-1beta18, but not IL-1alphabeta, reduces susceptibility to hypoxia-ischemia in the immature brain
  • 2005
  • Ingår i: Dev Neurosci. ; 27:2-4, s. 143-8
  • Tidskriftsartikel (refereegranskat)abstract
    • Interleukin (IL)-1 and IL-18 belong to the IL-1 family. IL-18 deficiency has been shown to confer moderate protection after hypoxia-ischemia (HI) in the immature brain, while the contribution of the two isoforms of IL-1 (IL-1alpha and IL-1beta) in neonatal HI brain injury has not been investigated previously. The aim of this study was to examine the contribution of the different members of the IL-1 family to neonatal HI damage. Unilateral HI was induced at postnatal day 9 in IL-1beta, IL-1beta18, and IL-1alphabeta knockout and wild-type mice and brain injury was evaluated 1 week later. IL-1beta18-deficient mice showed 17% reduction in brain injury, while no significant reduction in injury was detected between any of the other groups. These results indicate that IL-18, but not IL-1beta, or the combination of IL-1alpha and IL-1beta, is a contributor to HI injury in the immature brain.
  •  
3.
  • Henningsson, Louise, 1979, et al. (författare)
  • Interleukin-17A during local and systemic Staphylococcus aureus-induced arthritis in mice.
  • 2010
  • Ingår i: Infection and immunity. - 1098-5522. ; 78:9, s. 3783-90
  • Tidskriftsartikel (refereegranskat)abstract
    • Staphylococcus aureus is one of the dominant pathogens that induce septic arthritis in immunocompromised hosts, e.g., patients suffering from rheumatoid arthritis treated with immunosuppressive drugs. S. aureus-induced arthritis leads to severe joint destruction and high mortality despite antibiotic treatment. Recently, interleukin-17A (IL-17A) has been discovered to be an important mediator of aseptic arthritis both in mice and humans, but its function in S. aureus-induced arthritis is largely unknown. Here, we investigated the role of IL-17A in host defense against arthritis following systemic and local S. aureus infection in vivo. IL-17A knockout mice and wild-type mice were inoculated systemically (intravenously) or locally (intra-articularly) with S. aureus. During systemic infection, IL-17A knockout mice lost significantly more weight than the wild-type mice did, but no differences were found in the mortality rate. The absence of IL-17A had no impact on clinical arthritis development but led to increased histopathological erosivity late during systemic S. aureus infection. Bacterial clearance in kidneys was increased in IL-17A knockout mice compared to the level in wild-type mice only 1 day after bacterial inoculation. During systemic S. aureus infection, serum IL-17F protein levels and mRNA levels in the lymph nodes were elevated in the IL-17A knockout mice compared to the level in wild-type mice. In contrast to systemic infection, the IL-17A knockout mice had increased synovitis and erosions and locally decreased clearance of bacteria 3 days after local bacterial inoculation. On the basis of these findings, we suggest that IL-17A is more important in local host defense than in systemic host defense against S. aureus-induced arthritis.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy