SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Jinnai Masako) "

Sökning: WFRF:(Jinnai Masako)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Jinnai, Masako, et al. (författare)
  • A Model of Germinal Matrix Hemorrhage in Preterm Rat Pups.
  • 2020
  • Ingår i: Frontiers in cellular neuroscience. - : Frontiers Media SA. - 1662-5102. ; 14
  • Tidskriftsartikel (refereegranskat)abstract
    • Germinal matrix hemorrhage (GMH) is a serious complication in extremely preterm infants associated with neurological deficits and mortality. The purpose of the present study was to develop and characterize a grade III and IV GMH model in postnatal day 5 (P5) rats, the equivalent of preterm human brain maturation. P5 Wistar rats were exposed to unilateral GMH through intracranial injection into the striatum close to the germinal matrix with 0.1, 0.2, or 0.3 U of collagenase VII. During 10 days following GMH induction, motor functions and body weight were assessed and brain tissue collected at P16. Animals were tested for anxiety, motor coordination and motor asymmetry on P22-26 and P36-40. Using immunohistochemical staining and neuropathological scoring we found that a collagenase dose of 0.3 U induced GMH. Neuropathological assessment revealed that the brain injury in the collagenase group was characterized by dilation of the ipsilateral ventricle combined with mild to severe cellular necrosis as well as mild to moderate atrophy at the levels of striatum and subcortical white matter, and to a lesser extent, hippocampus and cortex. Within 0.5 h post-collagenase injection there was clear bleeding at the site of injury, with progressive increase in iron and infiltration of neutrophils in the first 24 h, together with focal microglia activation. By P16, blood was no longer observed, although significant gray and white matter brain infarction persisted. Astrogliosis was also detected at this time-point. Animals exposed to GMH performed worse than controls in the negative geotaxis test and also opened their eyes with latency compared to control animals. At P40, GMH rats spent more time in the center of open field box and moved at higher speed compared to the controls, and continued to show ipsilateral injury in striatum and subcortical white matter. We have established a P5 rat model of collagenase-induced GMH for the study of preterm brain injury. Our results show that P5 rat pups exposed to GMH develop moderate brain injury affecting both gray and white matter associated with delayed eye opening and abnormal motor functions. These animals develop hyperactivity and show reduced anxiety in the juvenile stage.
  •  
2.
  • Koning, Gabriella, et al. (författare)
  • Magnesium sulphate induces preconditioning in preterm rodent models of cerebral hypoxia-ischemia.
  • 2018
  • Ingår i: International journal of developmental neuroscience : the official journal of the International Society for Developmental Neuroscience. - : Wiley. - 1873-474X. ; 70, s. 56-66
  • Tidskriftsartikel (refereegranskat)abstract
    • Brain injury in preterm infants represents a substantial clinical problem associated with development of motor impairment, cognitive deficits and psychiatric problems. According to clinical studies, magnesium sulphate (MgSO4) given to women in preterm labor reduces the risk of cerebral palsy in the offspring but the mechanisms behind its neuroprotective effects are still unclear. Our aim was to explore whether MgSO4 induces tolerance (preconditioning) in the preterm rodent brain. For this purpose we established a model of perinatal hypoxia-ischemia (HI) in postnatal day 4 rats and also applied a recently developed postnatal day 5 mouse model of perinatal brain injury.Postnatal day 4 Wistar rats were exposed to unilateral carotid artery ligation followed by 60, 70 or 80min of hypoxia (8% O2). On postnatal day 11, brains were collected and macroscopically visible damage as well as white and grey matter injury was examined using immunohistochemical staining. Once the model had been established, a possible preconditioning protection induced by a bolus MgSO4 injection prior to 80min HI was examined 7days after the insult. Next, a MgSO4 bolus was injected in C57Bl6 mice on PND 4 followed by exposure to unilateral carotid artery ligation and hypoxia, (10% O2) for 70min on PND 5. Brains were collected 7days after the insult and examined with immunohistochemistry for grey and white matter injury.In rats, a 60min period of hypoxia resulted in very few animals with brain injury and although 70min of hypoxia resulted in a higher percentage of injured animals, the brains were marginally damaged. An 80min exposure of hypoxia caused cortical tissue damage combined with hippocampal atrophy and neuronal loss in the C3 hippocampal layer. In the rat model, MgSO4 (1.1mg/g administered i.p. 24h prior to the induction of HI, resulting in a transient serum Mg2+ concentration elevation to 4.1±0.2mmol/l at 3h post i.p. injection) reduced brain injury by 74% in grey matter and 64% in white matter. In the mouse model, MgSO4 (0.92mg/g) i.p. injection given 24h prior to the HI insult resulted in a Mg2+ serum concentration increase reaching 2.7±0.3mmol/l at 3h post injection, which conferred a 40% reduction in grey matter injury.We have established a postnatal day 4 rat model of HI for the study of preterm brain injury. MgSO4 provides a marked preconditioning protection both in postnatal day 4 rats and in postnatal day 5 mice.
  •  
3.
  • Thornton, C., et al. (författare)
  • Cell death in the developing brain after hypoxia-ischemia
  • 2017
  • Ingår i: Frontiers in Cellular Neuroscience. - : Frontiers Media SA. - 1662-5102. ; 11
  • Forskningsöversikt (refereegranskat)abstract
    • Perinatal insults such as hypoxia–ischemia induces secondary brain injury. In order to develop the next generation of neuroprotective therapies, we urgently need to understand the underlying molecular mechanisms leading to cell death. The cell death mechanisms have been shown to be quite different in the developing brain compared to that in the adult. The aim of this review is update on what cell death mechanisms that are operating particularly in the setting of the developing CNS. In response to mild stress stimuli a number of compensatory mechanisms will be activated, most often leading to cell survival. Moderate-to-severe insults trigger regulated cell death. Depending on several factors such as the metabolic situation, cell type, nature of the stress stimulus, and which intracellular organelle(s) are affected, the cell undergoes apoptosis (caspase activation) triggered by BAX dependent mitochondrial permeabilzation, necroptosis (mixed lineage kinase domain-like activation), necrosis (via opening of the mitochondrial permeability transition pore), autophagic cell death (autophagy/Na+, K+-ATPase), or parthanatos (poly(ADP-ribose) polymerase 1, apoptosis-inducing factor). Severe insults cause accidental cell death that cannot be modulated genetically or by pharmacologic means. However, accidental cell death leads to the release of factors (damage-associated molecular patterns) that initiate systemic effects, as well as inflammation and (regulated) secondary brain injury in neighboring tissue. Furthermore, if one mode of cell death is inhibited, another route may step in at least in a scenario when upstream damaging factors predominate over protective responses. The provision of alternative routes through which the cell undergoes death has to be taken into account in the hunt for novel brain protective strategies. © 2017 Thornton, Leaw, Mallard, Nair, Jinnai and Hagberg.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy