SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Jucker Tommaso) "

Sökning: WFRF:(Jucker Tommaso)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Baeten, Lander, et al. (författare)
  • Identifying the tree species compositions that maximize ecosystem functioning in European forests
  • 2019
  • Ingår i: Journal of Applied Ecology. - : Wiley. - 0021-8901 .- 1365-2664. ; 56:3, s. 733-744
  • Tidskriftsartikel (refereegranskat)abstract
    • 1. Forest ecosystem functioning generally benefits from higher tree species richness, but variation within richness levels is typically large. This is mostly due to the contrasting performances of communities with different compositions. Evidence-based understanding of composition effects on forest productivity, as well as on multiple other functions will enable forest managers to focus on the selection of species that maximize functioning, rather than on diversity per se.2. We used a dataset of 30 ecosystem functions measured in stands with different species richness and composition in six European forest types. First, we quantified whether the compositions that maximize annual above-ground wood production (productivity) generally also fulfil the multiple other ecosystem functions (multifunctionality). Then, we quantified the species identity effects and strength of interspecific interactions to identify the "best" and "worst" species composition for multifunctionality. Finally, we evaluated the real-world frequency of occurrence of best and worst mixtures, using harmonized data from multiple national forest inventories.3. The most productive tree species combinations also tended to express relatively high multifunctionality, although we found a relatively wide range of compositions with high- or low-average multifunctionality for the same level of productivity. Monocultures were distributed among the highest as well as the lowest performing compositions. The variation in functioning between compositions was generally driven by differences in the performance of the component species and, to a lesser extent, by particular interspecific interactions. Finally, we found that the most frequent species compositions in inventory data were monospecific stands and that the most common compositions showed below-average multifunctionality and productivity.4. Synthesis and applications. Species identity and composition effects are essential to the development of high-performing production systems, for instance in forestry and agriculture. They therefore deserve great attention in the analysis and design of functional biodiversity studies if the aim is to inform ecosystem management. A management focus on tree productivity does not necessarily trade-off against other ecosystem functions; high productivity and multifunctionality can be combined with an informed selection of tree species and species combinations.
  •  
2.
  • De Frenne, Pieter, et al. (författare)
  • Forest microclimates and climate change : Importance, drivers and future research agenda
  • 2021
  • Ingår i: Global Change Biology. - : Wiley. - 1354-1013 .- 1365-2486. ; 27:11, s. 2279-2297
  • Forskningsöversikt (refereegranskat)abstract
    • Forest microclimates contrast strongly with the climate outside forests. To fully understand and better predict how forests' biodiversity and functions relate to climate and climate change, microclimates need to be integrated into ecological research. Despite the potentially broad impact of microclimates on the response of forest ecosystems to global change, our understanding of how microclimates within and below tree canopies modulate biotic responses to global change at the species, community and ecosystem level is still limited. Here, we review how spatial and temporal variation in forest microclimates result from an interplay of forest features, local water balance, topography and landscape composition. We first stress and exemplify the importance of considering forest microclimates to understand variation in biodiversity and ecosystem functions across forest landscapes. Next, we explain how macroclimate warming (of the free atmosphere) can affect microclimates, and vice versa, via interactions with land-use changes across different biomes. Finally, we perform a priority ranking of future research avenues at the interface of microclimate ecology and global change biology, with a specific focus on three key themes: (1) disentangling the abiotic and biotic drivers and feedbacks of forest microclimates; (2) global and regional mapping and predictions of forest microclimates; and (3) the impacts of microclimate on forest biodiversity and ecosystem functioning in the face of climate change. The availability of microclimatic data will significantly increase in the coming decades, characterizing climate variability at unprecedented spatial and temporal scales relevant to biological processes in forests. This will revolutionize our understanding of the dynamics, drivers and implications of forest microclimates on biodiversity and ecological functions, and the impacts of global changes. In order to support the sustainable use of forests and to secure their biodiversity and ecosystem services for future generations, microclimates cannot be ignored.
  •  
3.
  • Jucker, Tommaso, et al. (författare)
  • Tallo: A global tree allometry and crown architecture database
  • 2022
  • Ingår i: Global Change Biology. - : Wiley. - 1354-1013 .- 1365-2486. ; 28:17, s. 5254-5268
  • Tidskriftsartikel (refereegranskat)abstract
    • Data capturing multiple axes of tree size and shape, such as a tree's stem diameter, height and crown size, underpin a wide range of ecological research—from developing and testing theory on forest structure and dynamics, to estimating forest carbon stocks and their uncertainties, and integrating remote sensing imagery into forest monitoring programmes. However, these data can be surprisingly hard to come by, particularly for certain regions of the world and for specific taxonomic groups, posing a real barrier to progress in these fields.To overcome this challenge, we developed the Tallo database, a collection of 498,838 georeferenced and taxonomically standardized records of individual trees for which stem diameter, height and/or crown radius have been measured. These data were collected at 61,856 globally distributed sites, spanning all major forested and non-forested biomes. The majority of trees in the database are identified to species (88%), and collectively Tallo includes data for 5163 species distributed across 1453 genera and 187 plant families. The database is publicly archived under a CC-BY 4.0 licence and can be access from: https://doi.org/10.5281/zenodo.6637599.To demonstrate its value, here we present three case studies that highlight how the Tallo database can be used to address a range of theoretical and applied questions in ecology—from testing the predictions of metabolic scaling theory, to exploring the limits of tree allometric plasticity along environmental gradients and modelling global variation in maximum attainable tree height. In doing so, we provide a key resource for field ecologists, remote sensing researchers and the modelling community working together to better understand the role that trees play in regulating the terrestrial carbon cycle.
  •  
4.
  • Kehoe, Laura, et al. (författare)
  • Make EU trade with Brazil sustainable
  • 2019
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 364:6438, s. 341-
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)
  •  
5.
  • Kemppinen, Julia, et al. (författare)
  • Microclimate, an important part of ecology and biogeography
  • 2024
  • Ingår i: GLOBAL ECOLOGY AND BIOGEOGRAPHY. - 1466-822X .- 1466-8238. ; 33:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Brief introduction: What are microclimates and why are they important?Microclimate science has developed into a global discipline. Microclimate science is increasingly used to understand and mitigate climate and biodiversity shifts. Here, we provide an overview of the current status of microclimate ecology and biogeography in terrestrial ecosystems, and where this field is heading next.Microclimate investigations in ecology and biogeographyWe highlight the latest research on interactions between microclimates and organisms, including how microclimates influence individuals, and through them populations, communities and entire ecosystems and their processes. We also briefly discuss recent research on how organisms shape microclimates from the tropics to the poles.Microclimate applications in ecosystem managementMicroclimates are also important in ecosystem management under climate change. We showcase new research in microclimate management with examples from biodiversity conservation, forestry and urban ecology. We discuss the importance of microrefugia in conservation and how to promote microclimate heterogeneity.Methods for microclimate scienceWe showcase the recent advances in data acquisition, such as novel field sensors and remote sensing methods. We discuss microclimate modelling, mapping and data processing, including accessibility of modelling tools, advantages of mechanistic and statistical modelling and solutions for computational challenges that have pushed the state-of-the-art of the field.What's next?We identify major knowledge gaps that need to be filled for further advancing microclimate investigations, applications and methods. These gaps include spatiotemporal scaling of microclimate data, mismatches between macroclimate and microclimate in predicting responses of organisms to climate change, and the need for more evidence on the outcomes of microclimate management.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5
Typ av publikation
tidskriftsartikel (4)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (4)
övrigt vetenskapligt/konstnärligt (1)
Författare/redaktör
Aalto, Juha (2)
De Frenne, Pieter (2)
Lenoir, Jonathan (2)
Meineri, Eric (1)
Hylander, Kristoffer (1)
Luoto, Miska (1)
visa fler...
Ali, Arshad (1)
Rothhaupt, Karl-Otto (1)
Weigend, Maximilian (1)
Verheyen, Kris (1)
Farrell, Katharine N ... (1)
Islar, Mine (1)
Krause, Torsten (1)
Uddling, Johan, 1972 (1)
Stenlid, Jan (1)
Alexanderson, Helena (1)
Schneider, Christoph (1)
Battiston, Roberto (1)
Lukic, Marko (1)
Pereira, Laura (1)
Riggi, Laura (1)
Cattaneo, Claudio (1)
Jung, Martin (1)
Andresen, Louise C. (1)
Kasimir, Åsa (1)
Wang-Erlandsson, Lan (1)
Sutherland, William ... (1)
Boonstra, Wiebren J. (1)
Vajda, Vivi (1)
Jaroszewicz, Bogdan (1)
Pascual, Unai (1)
Tscharntke, Teja (1)
Dahlgren, Jonas (1)
Brown, Calum (1)
Peterson, Gustaf (1)
Meyer, Carsten (1)
Seppelt, Ralf (1)
Johansson, Maria (1)
Martin, Jean Louis (1)
Allan, Eric (1)
Fischer, Markus (1)
Olsson, Urban (1)
Vandvik, Vigdis (1)
Hortal, Joaquin (1)
Buckley, Yvonne (1)
Koricheva, Julia (1)
Petrovan, Silviu (1)
Schindler, Stefan (1)
Carvalho, Joana (1)
Amo, Luisa (1)
visa färre...
Lärosäte
Stockholms universitet (2)
Sveriges Lantbruksuniversitet (2)
Göteborgs universitet (1)
Kungliga Tekniska Högskolan (1)
Uppsala universitet (1)
Lunds universitet (1)
visa fler...
Mittuniversitetet (1)
Chalmers tekniska högskola (1)
IVL Svenska Miljöinstitutet (1)
visa färre...
Språk
Engelska (5)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (5)
Teknik (1)
Lantbruksvetenskap (1)
Samhällsvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy