SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Jungner Hogne) "

Sökning: WFRF:(Jungner Hogne)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Lastusaari, Mika, et al. (författare)
  • The Bologna Stone: history's first persistent luminescent material
  • 2012
  • Ingår i: European Journal of Mineralogy. - : Schweizerbart. - 1617-4011 .- 0935-1221. ; 24:5, s. 885-890
  • Tidskriftsartikel (refereegranskat)abstract
    • In 1603, the Italian shoemaker Vincenzo Cascariolo found that a stone (baryte) from the outskirts of Bologna emitted light in the dark without any external excitation source. However, the calcination of the baryte was needed prior to this observation. The stone later named as the Bologna Stone was among the first luminescent materials and the first documented material to show persistent luminescence. The mechanism behind the persistent emission in this material has remained a mystery ever since. In this work, the Bologna Stone (BaS) was prepared from the natural baryte (Bologna, Italy) used by Cascariolo. Its properties, e. g. impurities (dopants) and their valences, luminescence, persistent luminescence and trap structure, were compared to those of the pure BaS materials doped with different (transition) metals (Cu, Ag, Pb) known to yield strong luminescence. The work was carried out by using different methods (XANES, TL, VUV-UV-vis luminescence, TGA-DTA, XPD). A plausible mechanism for the persistent luminescence from the Bologna Stone with Cu+ as the emitting species was constructed based on the results obtained. The puzzle of the Bologna Stone can thus be considered as resolved after some 400 years of studies.
  •  
2.
  • Ojala, Antti E. K., et al. (författare)
  • Biases in radiocarbon dating of organic fractions in sediments from meromictic and seasonally hypoxic lakes
  • 2019
  • Ingår i: Bulletin of the Geological Society of Finland. - : GEOLOGICAL SOC FINLAND. - 0367-5211 .- 1799-4632. ; 91, s. 221-235
  • Tidskriftsartikel (refereegranskat)abstract
    • We present here radiocarbon dating results from two boreal lakes in Finland, which are permanently (meromictic) or seasonally stratified and contain continuous sequences of annually laminated sediments that started to form in the early Holocene. The radiocarbon dating results of different organic components were compared with the varve-based sediment chronologies. The deviation between the Lake Valkiajarvi varve chronology (8400 varve years 2-3% error estimate) and 33 C-14 dates taken from insoluble and soluble organic phases vary inconsistently throughout the Holocene. In extreme cases mean calibrated radiocarbon dates with 95.4% confidence levels (2 sigma) are -2350 and +2040 years offset when compared with the varve chronology. On average, the radiocarbon dates are offset by ca. +550 years. The deviation between the Lake Nautajarvi varve chronology (9898 varve years +/- 1% error estimate) and 26 C-14 dates analyzed with conventional and AMS methods indicates that radiocarbon dates are systematically older by 500-1300 years (about 900 years on average). This significant offset mean that radiocarbon dates obtained from organic bulk sediment of meromictic and seasonally hypoxic lakes must be cautiously interpreted because of the reservoir effect and carbon cycling at the sediment-water interface. Direct evidence was obtained from the dating of soluble fraction and insoluble organic matter from near bottom water in the monimolimnion of Lake Valkiajarvi, which yielded C-14 ages of 560 +/- 80 BP and 2070 +/- 140 BP, respectively. Our study reinforces previous results that age-depth models based on bulk sediment radiocarbon dates obtained on sediments of stratified lakes are of limited value for accurate dating of changes in land use and especially the commence of agriculture.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy