SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Kasaba Yasumasa) "

Sökning: WFRF:(Kasaba Yasumasa)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Gerndt, Andreas, et al. (författare)
  • CROSS DRIVE : A New Interactive and Immersive Approach for Exploring 3D Time-Dependent Mars Atmospheric Data in Distributed Teams
  • 2016
  • Ingår i: American Astronomical Society, DPS meeting #48, id.220.31.
  • Konferensbidrag (refereegranskat)abstract
    • Atmospheric phenomena of Mars can be highly dynamic and have daily and seasonal variations. Planetary-scale wavelike disturbances, for example, are frequently observed in Mars' polar winter atmosphere. Possible sources of the wave activity were suggested to be dynamical instabilities and quasi-stationary planetary waves, i.e. waves that arise predominantly via zonally asymmetric surface properties. For a comprehensive understanding of these phenomena, single layers of altitude have to be analyzed carefully and relations between different atmospheric quantities and interaction with the surface of Mars have to be considered. The CROSS DRIVE project tries to address the presentation of those data with a global view by means of virtual reality techniques. Complex orbiter data from spectrometer and observation data from Earth are combined with global circulation models and high-resolution terrain data and images available from Mars Express or MRO instruments. Scientists can interactively extract features from those dataset and can change visualization parameters in real-time in order to emphasize findings. Stereoscopic views allow for perception of the actual 3D behavior of Mars's atmosphere. A very important feature of the visualization system is the possibility to connect distributed workspaces together. This enables discussions between distributed working groups. The workspace can scale from virtual reality systems to expert desktop applications to web-based project portals. If multiple virtual environments are connected, the 3D position of each individual user is captured and used to depict the scientist as an avatar in the virtual world. The appearance of the avatar can also scale from simple annotations to complex avatars using tele-presence technology to reconstruct the users in 3D. Any change of the feature set (annotations, cutplanes, volume rendering, etc.) within the VR is immediately exchanged between all connected users. This allows that everybody is always aware of what is visible and discussed. The discussion is supported by audio and interaction is controlled by a moderator managing turn-taking presentations. A use case execution proved a success and showed the potential of this immersive approach.
  •  
2.
  • Kasaba, Yasumasa, et al. (författare)
  • Mission Data Processor Aboard the BepiColombo Mio Spacecraft : Design and Scientific Operation Concept
  • 2020
  • Ingår i: Space Science Reviews. - : Springer Science and Business Media LLC. - 0038-6308 .- 1572-9672. ; 216:3
  • Forskningsöversikt (refereegranskat)abstract
    • BepiColombo Mio, also known as the Mercury Magnetospheric Orbiter (MMO), is intended to conduct the first detailed study of the magnetic field and environment of the innermost planet, Mercury, alongside the Mercury Planetary Orbiter (MPO). This orbiter has five payload groups; the MaGnetic Field Investigation (MGF), the Mercury Plasma Particle Experiment (MPPE), the Plasma Wave Investigation (PWI), the Mercury Sodium Atmosphere Spectral Imager (MSASI), and the Mercury Dust Monitor (MDM). These payloads operate through the Mission Data Processor (MDP) that acts as an integrated system for Hermean environmental studies by the in situ observation of charged and energetic neutral particles, magnetic and electric fields, plasma waves, dust, and the remote sensing of radio waves and exospheric emissions. The MDP produces three kinds of coordinated data sets: Survey (L) mode for continuous monitoring, Nominal (M) mode for standard analyses of several hours in length (or more), and Burst (H) mode for analysis based on 4-20-min-interval datasets with the highest cadence. To utilize the limited telemetry bandwidth, nominal- and burst-mode data sets are partially downlinked after selections of data based on L- or L/M-mode data, respectively. Burst-mode data can be taken at preset timings, or by onboard automatic triggering. The MDP functions are implemented and tested on the ground as well as cruising spacecraft; they are responsible for conducting full scientific operations aboard spacecraft.
  •  
3.
  • Kasaba, Yasumasa, et al. (författare)
  • Plasma Wave Investigation (PWI) Aboard BepiColombo Mio on the Trip to the First Measurement of Electric Fields, Electromagnetic Waves, and Radio Waves Around Mercury
  • 2020
  • Ingår i: Space Science Reviews. - : SPRINGER. - 0038-6308 .- 1572-9672. ; 216:4
  • Forskningsöversikt (refereegranskat)abstract
    • The Plasma Wave Investigation (PWI) aboard the BepiColombo Mio (Mercury Magnetospheric Orbiter, MMO) will enable the first observations of electric fields, plasma waves, and radio waves in and around the Hermean magnetosphere and exosphere. The PWI has two sets of receivers (EWO with AM(2)P, SORBET) connected to two electric field sensors (MEFISTO and WPT) and two magnetic field sensors (SCM: LF-SC and DB-SC). After the launch on October 20, 2018, we began initial operations, confirmed that all receivers were functioning properly, and released the launch locks on the sensors. Those sensors are not deployed during the cruising phase, but the PWI is still capable performing magnetic field observations. After full deployment of all sensors following insertion into Mercury orbit, the PWI will start its measurements of the electric field from DC to 10 MHz using two dipole antennae with a 32-m tip-to-tip length in the spin plane and the magnetic field from 0.3 Hz to 20 kHz using a three-axis sensor and from 2.5 kHz to 640 kHz using a single-axis sensor at the tip of a 4.5-m solid boom extended from the spacecraft's side panel. Those receivers and sensors will provide (1) in-situ measurements of electron density and temperature that can be used to determine the structure and dynamics of the Hermean plasma environment; (2) in-situ measurements of the electron and ion scale waves that characterize the energetic processes governed by wave-particle interactions and non-MHD interactions; (3) information on radio waves, which can be used to remotely probe solar activity in the heliocentric sector facing Mercury, to study electromagnetic-energy transport to and from Mercury, and to obtain crustal information from reflected electromagnetic waves; and (4) information concerning dust impacts on the spacecraft body detected via potential disturbances. This paper summarizes the characteristics of the overall PWI, including its significance, its objectives, its expected performance specifications, and onboard and ground data processing. This paper also presents the detailed design of the receiver components installed in a unified chassis. The PWI in the cruise phase will observe magnetic-field turbulence during multiple flybys of Earth, Venus, and Mercury. After the Mercury-orbit insertion planned at the end of 2025, we will deploy all sensors and commence full operation while coordinating with all payloads onboard the Mio and MPO spacecraft.
  •  
4.
  • Murakami, Go, et al. (författare)
  • Mio - First Comprehensive Exploration of Mercury's Space Environment : Mission Overview
  • 2020
  • Ingår i: Space Science Reviews. - : Springer Nature. - 0038-6308 .- 1572-9672. ; 216:7
  • Forskningsöversikt (refereegranskat)abstract
    • Mercury has a unique and complex space environment with its weak global magnetic field, intense solar wind, tenuous exosphere, and magnetospheric plasma particles. This complex system makes Mercury an excellent science target to understand effects of the solar wind to planetary environments. In addition, investigating Mercury's dynamic magnetosphere also plays a key role to understand extreme exoplanetary environment and its habitability conditions against strong stellar winds. BepiColombo, a joint mission to Mercury by the European Space Agency and Japan Aerospace Exploration Agency, will address remaining open questions using two spacecraft, Mio and the Mercury Planetary Orbiter. Mio is a spin-stabilized spacecraft designed to investigate Mercury's space environment, with a powerful suite of plasma instruments, a spectral imager for the exosphere, and a dust monitor. Because of strong constraints on operations during its orbiting phase around Mercury, sophisticated observation and downlink plans are required in order to maximize science outputs. This paper gives an overview of the Mio spacecraft and its mission, operations plan, and data handling and archiving.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy