SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Kasprzyk I.) "

Sökning: WFRF:(Kasprzyk I.)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Imanishi, T., et al. (författare)
  • Integrative annotation of 21,037 human genes validated by full-length cDNA clones
  • 2004
  • Ingår i: PLoS biology. - : Public Library of Science (PLoS). - 1544-9173 .- 1545-7885. ; 2:6, s. 856-875
  • Tidskriftsartikel (refereegranskat)abstract
    • The human genome sequence defines our inherent biological potential; the realization of the biology encoded therein requires knowledge of the function of each gene. Currently, our knowledge in this area is still limited. Several lines of investigation have been used to elucidate the structure and function of the genes in the human genome. Even so, gene prediction remains a difficult task, as the varieties of transcripts of a gene may vary to a great extent. We thus performed an exhaustive integrative characterization of 41,118 full-length cDNAs that capture the gene transcripts as complete functional cassettes, providing an unequivocal report of structural and functional diversity at the gene level. Our international collaboration has validated 21,037 human gene candidates by analysis of high-quality full-length cDNA clones through curation using unified criteria. This led to the identification of 5,155 new gene candidates. It also manifested the most reliable way to control the quality of the cDNA clones. We have developed a human gene database, called the H-Invitational Database (H-InvDB; http://www.h-invitational.jp/). It provides the following: integrative annotation of human genes, description of gene structures, details of novel alternative splicing isoforms, non-protein-coding RNAs, functional domains, subcellular localizations, metabolic pathways, predictions of protein three-dimensional structure, mapping of known single nucleotide polymorphisms (SNPs), identification of polymorphic microsatellite repeats within human genes, and comparative results with mouse full-length cDNAs. The H-InvDB analysis has shown that up to 4% of the human genome sequence (National Center for Biotechnology Information build 34 assembly) may contain misassembled or missing regions. We found that 6.5% of the human gene candidates (1,377 loci) did not have a good protein-coding open reading frame, of which 296 loci are strong candidates for non-protein-coding RNA genes. In addition, among 72,027 uniquely mapped SNPs and insertions/deletions localized within human genes, 13,215 nonsynonymous SNPs, 315 nonsense SNPs, and 452 indels occurred in coding regions. Together with 25 polymorphic microsatellite repeats present in coding regions, they may alter protein structure, causing phenotypic effects or resulting in disease. The H-InvDB platform represents a substantial contribution to resources needed for the exploration of human biology and pathology.
  •  
2.
  •  
3.
  • Grewling, L., et al. (författare)
  • Variation in Artemisia pollen seasons in Central and Eastern Europe
  • 2012
  • Ingår i: Agricultural and Forest Meteorology. - : Elsevier BV. - 1873-2240 .- 0168-1923. ; 160, s. 48-59
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper aims to address some gaps in current knowledge by studying temporal and spatial variations in Artemisia pollen counts (2000-2009) at 13 sites located in different biogeographical areas of Central and Eastern Europe. Analysis showed that start dates of Artemisia pollen seasons are greatly dependent on temperature during June and July, with hot summer temperatures having a tendency to delay summer flowering. However, this relationship is not linear and the rate at which seasons become later increases when mean minimum June-July temperatures reach a threshold of about 13 degrees C. No explanation for variations in pollen season intensity could be found. The geographical location or amount of urbanisation did not influence, either positively or negatively, the seasonal pollen index. Second peaks in Artemisia pollen seasons can be described as the pollen seasons of late flowering Artemisia species, and mainly occurred in the geographical area south of the Carpathian Mountains. These second peaks can significantly influence the seasonal pollen index, contributing over 50% to the season's total Artemisia pollen recorded at one site. (C) 2012 Elsevier B.V. All rights reserved.
  •  
4.
  • Verstraeten, A., et al. (författare)
  • Effects of tree pollen on throughfall element fluxes in European forests
  • 2023
  • Ingår i: Biogeochemistry. - Göteborg : Springer. - 0168-2563 .- 1573-515X. ; 165:3, s. 311-325
  • Tidskriftsartikel (refereegranskat)abstract
    • The effects of tree pollen on precipitation chemistry are not fully understood and this can lead to misinterpretations of element deposition in European forests. We investigated the relationship between forest throughfall (TF) element fluxes and the Seasonal Pollen Integral (SPIn) using linear mixed-effects modelling (LME). TF was measured in 1990-2018 during the main pollen season (MPS, arbitrary two months) in 61 managed, mostly pure, even-aged Fagus, Quercus, Pinus, and Picea stands which are part of the ICP Forests Level II network. The SPIn for the dominant tree genus was observed at 56 aerobiological monitoring stations in nearby cities. The net contribution of pollen was estimated as the TF flux in the MPS minus the fluxes in the preceding and succeeding months. In stands of Fagus and Picea, two genera that do not form large amounts of flowers every year, TF fluxes of potassium (K+), ammonium-nitrogen (NH4+-N), dissolved organic carbon (DOC), and dissolved organic nitrogen (DON) showed a positive relationship with SPIn. However- for Fagus- a negative relationship was found between TF nitrate-nitrogen (NO3--N) fluxes and SPIn. For Quercus and Pinus, two genera producing many flowers each year, SPIn displayed limited variability and no clear association with TF element fluxes. Overall, pollen contributed on average 4.1-10.6% of the annual TF fluxes of K+ > DOC > DON > NH4+--N with the highest contribution in Quercus > Fagus > Pinus > Picea stands. Tree pollen appears to affect TF inorganic nitrogen fluxes both qualitatively and quantitatively, acting as a source of NH4+--N and a sink of NO3--N. Pollen appears to play a more complex role in nutrient cycling than previously thought.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy