SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Kele Malin) "

Sökning: WFRF:(Kele Malin)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Drouin-Ouellet, Janelle, et al. (författare)
  • Age-related pathological impairments in directly reprogrammed dopaminergic neurons derived from patients with idiopathic Parkinson's disease
  • 2022
  • Ingår i: Stem Cell Reports. - : Elsevier BV. - 2213-6711. ; 17:10, s. 2203-2219
  • Tidskriftsartikel (refereegranskat)abstract
    • We have developed an efficient approach to generate functional induced dopaminergic (DA) neurons from adult human dermal fibroblasts. When performing DA neuronal conversion of patient fibroblasts with idiopathic Parkinson's disease (PD), we could specifically detect disease-relevant pathology in these cells. We show that the patient-derived neurons maintain age-related properties of the donor and exhibit lower basal chaperone-mediated autophagy compared with healthy donors. Furthermore, stress-induced autophagy resulted in an age-dependent accumulation of macroautophagic structures. Finally, we show that these impairments in patient-derived DA neurons leads to an accumulation of phosphorylated alpha-synuclein, the classical hallmark of PD pathology. This pathological phenotype is absent in neurons generated from induced pluripotent stem cells from the same patients. Taken together, our results show that direct neural reprogramming can be used for obtaining patient-derived DA neurons, which uniquely function as a cellular model to study age-related pathology relevant to idiopathic PD.
  •  
2.
  • Kele, Malin, et al. (författare)
  • Generation of human iPS cell line CTL07-II from human fibroblasts, under defined and xeno-free conditions
  • 2016
  • Ingår i: Stem Cell Research. - : Elsevier BV. - 1873-5061 .- 1876-7753. ; 17:3, s. 474-478
  • Tidskriftsartikel (refereegranskat)abstract
    • CTL07-II is a healthy feeder-free and characterized human induced pluripotent stem (iPS) cell line. Cultured under xeno-free and defined conditions. The line is generated from healthy human fibroblasts with non-integrating Sendai virus vectors encoding the four Yamanaka factors, OCT4, SOX2, KLF4 and cMYC. The generated iPS cells are free from reprogramming vectors and their purity, karyotypic stability and pluripotent capacity is confirmed.
  •  
3.
  • Laan, Loora, et al. (författare)
  • DNA methylation changes in Down syndrome derived neural iPSCs uncover co-dysregulation of ZNF and HOX3 families of transcription factors
  • 2020
  • Ingår i: Clinical Epigenetics. - : Springer Science and Business Media LLC. - 1868-7083 .- 1868-7075. ; 12
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Down syndrome (DS) is characterized by neurodevelopmental abnormalities caused by partial or complete trisomy of human chromosome 21 (T21). Analysis of Down syndrome brain specimens has shown global epigenetic and transcriptional changes but their interplay during early neurogenesis remains largely unknown. We differentiated induced pluripotent stem cells (iPSCs) established from two DS patients with complete T21 and matched euploid donors into two distinct neural stages corresponding to early- and mid-gestational ages.Results: Using the Illumina Infinium 450K array, we assessed the DNA methylation pattern of known CpG regions and promoters across the genome in trisomic neural iPSC derivatives, and we identified a total of 500 stably and differentially methylated CpGs that were annotated to CpG islands of 151 genes. The genes were enriched within the DNA binding category, uncovering 37 factors of importance for transcriptional regulation and chromatin structure. In particular, we observed regional epigenetic changes of the transcription factor genes ZNF69, ZNF700 and ZNF763 as well as the HOXA3, HOXB3 and HOXD3 genes. A similar clustering of differential methylation was found in the CpG islands of the HIST1 genes suggesting effects on chromatin remodeling.Conclusions: The study shows that early established differential methylation in neural iPSC derivatives with T21 are associated with a set of genes relevant for DS brain development, providing a novel framework for further studies on epigenetic changes and transcriptional dysregulation during T21 neurogenesis.
  •  
4.
  • Lam, Matti, et al. (författare)
  • Single cell analysis of autism patient with bi-allelic NRXN1-alpha deletion reveals skewed fate choice in neural progenitors and impaired neuronal functionality
  • 2019
  • Ingår i: Experimental Cell Research. - : Elsevier BV. - 0014-4827 .- 1090-2422. ; 383:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We generated human iPS derived neural stem cells and differentiated cells from healthy control individuals and an individual with autism spectrum disorder carrying bi-allelic NRXN1-alpha deletion. We investigated the expression of NRXN1-alpha during neural induction and neural differentiation and observed a pivotal role for NRXN1-alpha during early neural induction and neuronal differentiation. Single cell RNA-seq pinpointed neural stem cells carrying NRXN1-alpha deletion shifting towards radial glia-like cell identity and revealed higher proportion of differentiated astroglia. Furthermore, neuronal cells carrying NRXN1-alpha deletion were identified as immature by single cell RNA-seq analysis, displayed significant depression in calcium signaling activity and presented impaired maturation action potential profile in neurons investigated with electrophysiology. Our observations propose NRXN1-alpha plays an important role for the efficient establishment of neural stem cells, in neuronal differentiation and in maturation of functional excitatory neuronal cells.
  •  
5.
  • Wezyk, Michalina, et al. (författare)
  • Overactive BRCA1 Affects Presenilin 1 in Induced Pluripotent Stem Cell-Derived Neurons in Alzheimer's Disease
  • 2018
  • Ingår i: Journal of Alzheimer's Disease. - : IOS Press. - 1387-2877 .- 1875-8908. ; 62:1, s. 175-202
  • Tidskriftsartikel (refereegranskat)abstract
    • The BRCA1 protein, one of the major players responsible for DNA damage response has recently been linked to Alzheimer's disease (AD). Using primary fibroblasts and neurons reprogrammed from induced pluripotent stem cells (iPSC) derived from familial AD (FAD) patients, we studied the role of the BRCA1 protein underlying molecular neurodegeneration. By whole-transcriptome approach, we have found wide range of disturbances in cell cycle and DNA damage response in FAD fibroblasts. This was manifested by significantly increased content of BRCA1 phosphorylated on Ser1524 and abnormal ubiquitination and subcellular distribution of presenilin 1 (PS1). Accordingly, the iPSC-derived FAD neurons showed increased content of BRCA1(Ser1524) colocalized with degraded PS1, accompanied by an enhanced immunostaining pattern of amyloid-beta. Finally, overactivation of BRCA1 was followed by an increased content of Cdc25C phosphorylated on Ser216, likely triggering cell cycle re-entry in FAD neurons. This study suggests that overactivated BRCA1 could both influence PS1 turnover leading to amyloid-beta pathology and promote cell cycle re-entry-driven cell death of postmitotic neurons in AD.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy