SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Knorr M) "

Sökning: WFRF:(Knorr M)

  • Resultat 1-10 av 52
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  • Steinthorsdottir, Margret, et al. (författare)
  • The Miocene : the Future of the Past
  • 2021
  • Ingår i: Paleoceanography and Paleoclimatology. - : American Geophysical Union (AGU). - 2572-4517 .- 2572-4525. ; 36:4
  • Tidskriftsartikel (refereegranskat)abstract
    • The Miocene epoch (23.03–5.33 Ma) was a time interval of global warmth, relative to today. Continental configurations and mountain topography transitioned towards modern conditions, and many flora and fauna evolved into the same taxa that exist today. Miocene climate was dynamic: long periods of early and late glaciation bracketed a ∼2 Myr greenhouse interval – the Miocene Climatic Optimum (MCO). Floras, faunas, ice sheets, precipitation, pCO2, and ocean and atmospheric circulation mostly (but not ubiquitously) covaried with these large changes in climate. With higher temperatures and moderately higher pCO2 (∼400–600 ppm), the MCO has been suggested as a particularly appropriate analogue for future climate scenarios, and for assessing the predictive accuracy of numerical climate models – the same models that are used to simulate future climate. Yet, Miocene conditions have proved difficult to reconcile with models. This implies either missing positive feedbacks in the models, a lack of knowledge of past climate forcings, or the need for re‐interpretation of proxies, which might mitigate the model‐data discrepancy. Our understanding of Miocene climatic, biogeochemical, and oceanic changes on broad spatial and temporal scales is still developing. New records documenting the physical, chemical, and biotic aspects of the Earth system are emerging, and together provide a more comprehensive understanding of this important time interval. Here we review the state‐of‐the‐art in Miocene climate, ocean circulation, biogeochemical cycling, ice sheet dynamics, and biotic adaptation research as inferred through proxy observations and modelling studies.
  •  
4.
  • Steinthorsdottir, Margret, et al. (författare)
  • The Miocene: The Future of the Past
  • 2021
  • Ingår i: Paleoceanography and Paleoclimatology. - : American Geophysical Union (AGU). - 2572-4517 .- 2572-4525. ; 36:4
  • Tidskriftsartikel (refereegranskat)abstract
    • The Miocene epoch (23.03–5.33 Ma) was a time interval of global warmth, relative to today. Continental configurations and mountain topography transitioned toward modern conditions, and many flora and fauna evolved into the same taxa that exist today. Miocene climate was dynamic: long periods of early and late glaciation bracketed a ∼2 Myr greenhouse interval—the Miocene Climatic Optimum (MCO). Floras, faunas, ice sheets, precipitation, pCO2, and ocean and atmospheric circulation mostly (but not ubiquitously) covaried with these large changes in climate. With higher temperatures and moderately higher pCO2 (∼400–600 ppm), the MCO has been suggested as a particularly appropriate analog for future climate scenarios, and for assessing the predictive accuracy of numerical climate models—the same models that are used to simulate future climate. Yet, Miocene conditions have proved difficult to reconcile with models. This implies either missing positive feedbacks in the models, a lack of knowledge of past climate forcings, or the need for re-interpretation of proxies, which might mitigate the model-data discrepancy. Our understanding of Miocene climatic, biogeochemical, and oceanic changes on broad spatial and temporal scales is still developing. New records documenting the physical, chemical, and biotic aspects of the Earth system are emerging, and together provide a more comprehensive understanding of this important time interval. Here, we review the state-of-the-art in Miocene climate, ocean circulation, biogeochemical cycling, ice sheet dynamics, and biotic adaptation research as inferred through proxy observations and modeling studies.
  •  
5.
  • Acosta, R. P., et al. (författare)
  • A Model-Data Comparison of the Hydrological Response to Miocene Warmth : Leveraging the MioMIP1 Opportunistic Multi-Model Ensemble
  • 2024
  • Ingår i: Paleoceanography and Paleoclimatology. - 2572-4517 .- 2572-4525. ; 39:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The Miocene (23.03-5.33 Ma) is recognized as a period with close to modern-day paleogeography, yet a much warmer climate. With large uncertainties in future hydroclimate projections, Miocene conditions illustrate a potential future analog for the Earth system. A recent opportunistic Miocene Model Intercomparison Project 1 (MioMIP1) focused on synthesizing published Miocene climate simulations and comparing them with available temperature reconstructions. Here, we build on this effort by analyzing the hydrological cycle response to Miocene forcings across early-to-middle (E2MMIO; 20.03-11.6 Ma) and middle-to-late Miocene (M2LMIO; 11.5-5.33 Ma) simulations with CO2 concentrations ranging from 200 to 850 ppm and providing a model-data comparison against available precipitation reconstructions. We find global precipitation increases by similar to 2.1 and 2.3% per degree of warming for E2MMIO and M2LMIO simulations, respectively. Models generally agree on a wetter than modern-day tropics; mid and high-latitude, however, do not agree on the sign of subtropical precipitation changes with warming. Global monsoon analysis suggests most monsoon regions, except the North American Monsoon, experience higher precipitation rates under warmer conditions. Model-data comparison shows that mean annual precipitation is underestimated by the models regardless of CO2 concentration, particularly in the mid- to high-latitudes. This suggests that the models may not be (a) resolving key processes driving the hydrological cycle response to Miocene boundary conditions and/or (b) other boundary conditions or processes not considered here are critical to reproducing Miocene hydroclimate. This study highlights the challenges in modeling and reconstructing the Miocene hydrological cycle and serves as a baseline for future coordinated MioMIP efforts. This study looks at Earth's hydrological cycle during the Miocene (23-5 million years ago). During this period, the Earth's climate was 3-7 degrees C warmer than today, with carbon dioxide (CO2) estimates ranging between 400 and 850 ppm. Understanding how the hydrological cycle responded during warmer climate conditions can give us insight into what might happen as the Earth gets warmer. We analyzed a suite of Miocene paleoclimate simulations with different CO2 concentrations in the atmosphere and compared them against fossil plant data, which gives an estimate of the average annual rainfall during the period. We found that during the Miocene global rainfall increased by about 2.1%-2.3% for each degree of warming. The models agree that the tropics, mid- and high-latitude, became wetter than they are today but have lower agreement on whether subtropical areas got wetter or drier as they warmed. Compared to proxies, models consistently underestimated how much rain fell in a year, especially in the mid- to high-latitude. This illustrates the challenges in reconstructing the Miocene's hydrological cycle and suggests that the models might not fully capture the range of uncertainties associated with changes in the hydrological cycle due to warming or other factors that differentiated the Miocene. A multi-model comparison of the hydrological cycle in early-to-middle and middle-to-late Miocene simulations is conductedModels generally agree on wetter than modern tropics, middle and high latitudes, but not on the sign of subtropical precipitation changesModel-data comparison shows mean annual precipitation is underestimated by the models, particularly in the mid- to high-latitudes
  •  
6.
  • Burls, N. J., et al. (författare)
  • Simulating Miocene Warmth : Insights From an Opportunistic Multi-Model Ensemble (MioMIP1)
  • 2021
  • Ingår i: Paleoceanography and Paleoclimatology. - 2572-4517 .- 2572-4525. ; 36:5
  • Tidskriftsartikel (refereegranskat)abstract
    • The Miocene epoch, spanning 23.03-5.33 Ma, was a dynamic climate of sustained, polar amplified warmth. Miocene atmospheric CO2 concentrations are typically reconstructed between 300 and 600 ppm and were potentially higher during the Miocene Climatic Optimum (16.75-14.5 Ma). With surface temperature reconstructions pointing to substantial midlatitude and polar warmth, it is unclear what processes maintained the much weaker-than-modern equator-to-pole temperature difference. Here, we synthesize several Miocene climate modeling efforts together with available terrestrial and ocean surface temperature reconstructions. We evaluate the range of model-data agreement, highlight robust mechanisms operating across Miocene modeling efforts and regions where differences across experiments result in a large spread in warming responses. Prescribed CO2 is the primary factor controlling global warming across the ensemble. On average, elements other than CO2, such as Miocene paleogeography and ice sheets, raise global mean temperature by similar to 2 degrees C, with the spread in warming under a given CO2 concentration (due to a combination of the spread in imposed boundary conditions and climate feedback strengths) equivalent to similar to 1.2 times a CO2 doubling. This study uses an ensemble of opportunity: models, boundary conditions, and reference data sets represent the state-of-art for the Miocene, but are inhomogeneous and not ideal for a formal intermodel comparison effort. Acknowledging this caveat, this study is nevertheless the first Miocene multi-model, multi-proxy comparison attempted so far. This study serves to take stock of the current progress toward simulating Miocene warmth while isolating remaining challenges that may be well served by community-led efforts to coordinate modeling and data activities within a common analytical framework.
  •  
7.
  • Kaminski, T., et al. (författare)
  • Constraining a terrestrial biosphere model with remotely sensed atmospheric carbon dioxide
  • 2017
  • Ingår i: Remote Sensing of Environment. - : Elsevier BV. - 0034-4257. ; 203, s. 109-124
  • Tidskriftsartikel (refereegranskat)abstract
    • We present two novel earth observation products derived from the BESD and EMMA XCO2 products which were respectively retrieved from SCIAMACHY and GOSAT observations within the GreenHouse Gas project of ESA's Climate Change Initiative (GHG-CCI). These products are inferred by a Carbon Cycle Data Assimilation System (CCDAS) and consist of net and gross biosphere-atmosphere fluxes of carbon dioxide on a global 0.5° grid. As a further dataset provided by the CCI, the burnt area product developed by its Fire忌i project was used in the CCDAS to prescribe the emission component from biomass burning. The new flux products are provided with per-pixel uncertainty ranges. Fluxes with uncertainty ranges can also be provided aggregated in space and time, e.g. over given regions or as annual means. For both, posterior flux fields inferred from BESD and EMMA products, transport model simulations show reasonable agreement with the atmospheric carbon dioxide concentration observed at flask sampling stations. This means that the information provided by the terrestrial and transport models, the respective GHG ECV product, the burnt area ECV product, a product of the Fraction of Absorbed Photosynthetically Active Radiation used to drive the model, and the atmospheric flask samples is largely consistent. The most prominent feature in the posterior net flux is the tropical source of CO2 inferred from both products. But for the EMMA product this release, especially over South America, is with 300 gC/m2/year much more pronounced than for BESD. This confirms findings by a recent intercomparison of transport inversions using GOSAT data by Houweling et al. (2015). The reason for the larger net flux is increased heterotrophic respiration. For both products the posterior 2010 sink over Europe (without Russia) is in the range of a recent compilation of European flux estimates by Reuter et al. (2016b). The posterior 2010 uptake of Australia (including Oceania) inferred from the EMMA product is 1.3 ± 0.2 PgC/year and appears to confirm the high sink also derived from GOSAT by Detmers et al. (2015) over a slightly different period and area. While for some regions (USA, Canada, Europe, Russia, Asia) the one standard deviation uncertainty ranges derived from BESD and EMMA do overlap, for some other regions (Brazil, Africa, Australia) this is not the case. It is not clear yet whether this is due to the uncertainty specifications in the respective products or the handling of uncertainty in the assimilation chain. Assumptions on correlation of observational uncertainty in space and time have a considerable impact on the inferred flux fields (≈ 60 gC/m2/year). The effect of adding an uncertainty that approximates the error in the retrieval system is of similar size.
  •  
8.
  • Kaminski, T., et al. (författare)
  • Constraining terrestrial carbon fluxes through assimilation of SMOS products
  • 2018
  • Ingår i: 2018 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2018 - Proceedings. - 9781538671504 ; 2018-July, s. 1455-1458
  • Konferensbidrag (refereegranskat)abstract
    • The ongoing ESA funded'SMOS + Vegetation' project combines a retrieval component that aims at further improving the SMOS VOD product with an assimilation component that aims at demonstrating the added value of this product in constraining simulated land surface fluxes of carbon dioxide. This contribution focuses on the project's modelling and assimilation component. We describe the construction of dedicated observation operators that link the state of the terrestrial biosphere model to simulated VOD and surface layer soil moisture. We present our carbon assimilation system around a terrestrial biosphere model and demonstrate its operation through simultaneous assimilation of the SMOS VOD product over seven sites covering a range of plant functional types.
  •  
9.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 52
Typ av publikation
tidskriftsartikel (41)
konferensbidrag (7)
forskningsöversikt (2)
bokkapitel (2)
Typ av innehåll
refereegranskat (48)
övrigt vetenskapligt/konstnärligt (2)
populärvet., debatt m.m. (2)
Författare/redaktör
Malic, Ermin, 1980 (20)
Knorr, A. (19)
Selig, M. (11)
de Boer, Agatha M. (10)
Berghäuser, Gunnar, ... (9)
Hutchinson, David K. (9)
visa fler...
Chan, Wing-Le (8)
Niezgodzki, Igor (8)
Knorr, Gregor (8)
Steinig, Sebastian (8)
Zhu, Jiang (8)
Ladant, Jean-Baptist ... (7)
Abe-Ouchi, Ayako (7)
Donnadieu, Yannick (7)
Bratschitsch, R. (6)
Zhang, Zhongshi (6)
Kaminski, T. (6)
Winzer, T. (6)
Schneider, R. (5)
Scholze, M. (5)
de Vasconcellos, S. ... (5)
Lunt, Daniel J. (5)
Helm, M (5)
Knorr, Wolfgang (5)
Knorr, W. (5)
Huber, M. (4)
Schneider, H. (4)
Burls, N. J. (4)
Bradshaw, C. D. (4)
Lunt, D. J. (4)
Knorr, G. (4)
Chernikov, A. (4)
Vossbeck, M. (4)
Wu, M. (3)
Zhang, Z. (3)
Li, X. (3)
Pound, M. J. (3)
Schmidt, R (3)
Poulsen, Christopher ... (3)
Brem, Samuel, 1991 (3)
Schmidt, Robert (3)
Niehues, Iris (3)
Lohmann, Gerrit (3)
Raja, A. (3)
Christiansen, Domini ... (3)
Gasson, E. (3)
Lear, C. H. (3)
Inglis, Gordon N. (3)
Morozova, Polina (3)
Schuller, C (3)
visa färre...
Lärosäte
Chalmers tekniska högskola (20)
Stockholms universitet (13)
Lunds universitet (12)
Karolinska Institutet (4)
Uppsala universitet (3)
Linköpings universitet (2)
visa fler...
RISE (2)
Umeå universitet (1)
Linnéuniversitetet (1)
Naturhistoriska riksmuseet (1)
Sveriges Lantbruksuniversitet (1)
visa färre...
Språk
Engelska (52)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (46)
Teknik (3)
Medicin och hälsovetenskap (2)
Lantbruksvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy