SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Kruk Carla) "

Sökning: WFRF:(Kruk Carla)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Graco-Roza, Caio, et al. (författare)
  • Distance decay 2.0 – A global synthesis of taxonomic and functional turnover in ecological communities
  • 2022
  • Ingår i: Global Ecology and Biogeography. - : Wiley. - 1466-822X .- 1466-8238. ; 31:7, s. 1399-1421
  • Tidskriftsartikel (refereegranskat)abstract
    • Aim: Understanding the variation in community composition and species abundances (i.e., beta-diversity) is at the heart of community ecology. A common approach to examine beta-diversity is to evaluate directional variation in community composition by measuring the decay in the similarity among pairs of communities along spatial or environmental distance. We provide the first global synthesis of taxonomic and functional distance decay along spatial and environmental distance by analysing 148 datasets comprising different types of organisms and environments.Location: Global.Time period: 1990 to present.Major taxa studied: From diatoms to mammals.Method: We measured the strength of the decay using ranked Mantel tests (Mantel r) and the rate of distance decay as the slope of an exponential fit using generalized linear models. We used null models to test whether functional similarity decays faster or slower than expected given the taxonomic decay along the spatial and environmental distance. We also unveiled the factors driving the rate of decay across the datasets, including latitude, spatial extent, realm and organismal features.Results: Taxonomic distance decay was stronger than functional distance decay along both spatial and environmental distance. Functional distance decay was random given the taxonomic distance decay. The rate of taxonomic and functional spatial distance decay was fastest in the datasets from mid-latitudes. Overall, datasets covering larger spatial extents showed a lower rate of decay along spatial distance but a higher rate of decay along environmental distance. Marine ecosystems had the slowest rate of decay along environmental distances.Main conclusions: In general, taxonomic distance decay is a useful tool for biogeographical research because it reflects dispersal-related factors in addition to species responses to climatic and environmental variables. Moreover, functional distance decay might be a cost-effective option for investigating community changes in heterogeneous environments.
  •  
2.
  • Kosten, Sarian, et al. (författare)
  • Warmer climates boost cyanobacterial dominance in shallow lakes
  • 2012
  • Ingår i: Global Change Biology. - : Wiley. - 1354-1013. ; 18:1, s. 118-126
  • Tidskriftsartikel (refereegranskat)abstract
    • Dominance by cyanobacteria hampers human use of lakes and reservoirs worldwide. Previous studies indicate that excessive nutrient loading and warmer conditions promote dominance by cyanobacteria, but evidence from global scale field data has so far been scarce. Our analysis, based on a study of 143 lakes along a latitudinal transect ranging from subarctic Europe to southern South America, shows that although warmer climates do not result in higher overall phytoplankton biomass, the percentage of the total phytoplankton biovolume attributable to cyanobacteria increases steeply with temperature. Our results also reveal that the percent cyanobacteria is greater in lakes with high rates of light absorption. This points to a positive feedback because restriction of light availability is often a consequence of high phytoplankton biovolume, which in turn may be driven by nutrient loading. Our results indicate a synergistic effect of nutrients and climate. The implications are that in a future warmer climate, nutrient concentrations may have to be reduced substantially from present values in many lakes if cyanobacterial dominance is to be controlled.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy