SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Lages J.) "

Sökning: WFRF:(Lages J.)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Hou, J., et al. (författare)
  • Metabolic impact of redox cofactor perturbations in Saccharomyces cerevisiae
  • 2009
  • Ingår i: Metabolic Engineering. - : Elsevier BV. - 1096-7176 .- 1096-7184. ; 11:4-5, s. 253-261
  • Tidskriftsartikel (refereegranskat)abstract
    • Redox cofactors play a pivotal role in coupling catabolism with anabolism and energy generation during metabolism. There exists a delicate balance in the intracellular level of these cofactors to ascertain an optimal metabolic output. Therefore, cofactors are emerging to be attractive targets to induce widespread changes in metabolism. We present a detailed analysis of the impact of perturbations in redox cofactors in the cytosol or mitochondria on glucose and energy metabolism in Saccharomyces cerevisiae to aid metabolic engineering decisions that involve cofactor engineering. We enhanced NADH oxidation by introducing NADH oxidase or alternative oxidase, its ATP-mediated conversion to NADPH using NADH kinase as well as the interconversion of NADH and NADPH independent of ATP by the soluble, non-proton-translocating bacterial transhydrogenase. Decreasing cytosolic NADH level lowered glycerol production, while decreasing mitochondrial NADH lowered ethanol production. However, when these reactions were coupled with NADPH production, the metabolic changes were more moderated. The direct consequence of these perturbations could be seen in the shift of the intracellular concentrations of the cofactors. The changes in product profile and intracellular metabolite levels were closely linked to the ATP requirement for biomass synthesis and the efficiency of oxidative phosphorylation, as estimated from a simple stoichiometric model. The results presented here will provide valuable insights for a quantitative understanding and prediction of cellular response to redox-based perturbations for metabolic engineering applications. (C) 2009 Elsevier Inc. All rights reserved.
  •  
2.
  • Lages, J., et al. (författare)
  • Excess degassing drives long-term volcanic unrest at Nevado del Ruiz
  • 2024
  • Ingår i: Scientific Reports. - 2045-2322 .- 2045-2322. ; 14:1
  • Tidskriftsartikel (refereegranskat)abstract
    • This study combines volcanic gas compositions, SO2 flux and satellite thermal data collected at Nevado del Ruiz between 2018 and 2021. We find the Nevado del Ruiz plume to have exhibited relatively steady, high CO2 compositions (avg. CO2/ST ratios of 5.4 ± 1.9) throughout. Our degassing models support that the CO2/ST ratio variability derives from volatile exsolution from andesitic magma stored in the 1–4 km depth range. Separate ascent of CO2-rich gas bubbles through shallow (< 1 km depth), viscous, conduit resident magma causes the observed excess degassing. We infer that degassing of ~ 974 mm3 of shallow (1–4 km) stored magma has sourced the elevated SO2 degassing recorded during 2018–2021 (average flux ~ 1548 t/d). Of this, only < 1 mm3 of magma have been erupted through dome extrusion, highlighting a large imbalance between erupted and degassed magma. Escalating deep CO2 gas flushing, combined with the disruption of passive degassing, through sudden accumulation and pressurization of bubbles due to lithostatic pressure, may accelerate volcanic unrest and eventually lead to a major eruption.
  •  
3.
  • Lages, J., et al. (författare)
  • Volcanic Gas Emissions Along the Colombian Arc Segment of the Northern Volcanic Zone (CAS-NVZ): Implications for volcano monitoring and volatile budget of the Andean Volcanic Belt
  • 2019
  • Ingår i: Geochemistry, Geophysics, Geosystems. - 1525-2027. ; 20:11, s. 5057-5081
  • Tidskriftsartikel (refereegranskat)abstract
    • Studying spatial and temporal trends in volcanic gas compositions and fluxes is crucial both to volcano monitoring and to constrain the origin and recycling efficiency of volatiles at active convergent margins. New volcanic gas compositions and volatile fluxes are here reported for Nevado del Ruiz, Galeras, and Purace, three of the most persistently degassing volcanoes located in the Colombian Arc Segment of the Northern Volcanic Zone. At Nevado del Ruiz, from 2014 to 2017, plume emissions showed an average molar CO2/S-T ratio of 3.9 +/- 1.6 (S-T is total sulfur, S). Contemporary, fumarolic chemistry at Galeras progressively shifted toward low-temperature, S-depleted fumarolic gas discharges with an average CO2/S-T ratio in excess of 10 (6.0-46.0, 2014-2017). This shift in volcanic gas compositions was accompanied by a concurrent decrease in SO2 emissions, confirmed on 21 March 2017 by high-resolution ultraviolet camera-based SO2 fluxes of similar to 2.5 kg/s (similar to 213 t/day). For comparison, SO2 emissions remained high at Nevado del Ruiz (weighted average of 8 kg/s) between 2014 and 2017, while Purace maintained rather low emission levels (<1 kg/s of SO2, CO2/SO2 approximate to 14). We here estimate carbon dioxide fluxes for Nevado del Ruiz, Galeras, and Purace of similar to 23, 30, and 1 kg/s, respectively. These, combined with recent CO2 flux estimates for Nevado del Huila of similar to 10 kg/s (similar to 860 t/day), imply that this arc segment contributes about 50% to the total subaerial CO2 budget of the Andean Volcanic Belt. Furthermore, our work highlights the northward increase in carbon-rich sediment input into the mantle wedge via slab fluids and melts that is reflected in magmatic CO2/S-T values far higher than those reported for Southern Volcanic Zone and Central Volcanic Zone volcanoes. We estimate that about 20% (similar to 1.3 Mt C/year) of the C being subducted (similar to 6.19 Mt C/year) gets resurfaced through subaerial volcanic gas emissions in Colombia (Nevado del Ruiz similar to 0.7 Mt C/year). As global volcanic volatile fluxes continue to be quantified and refined, the contribution from this arc segment should not be underestimated.
  •  
4.
  • Turunen, Mikael J, et al. (författare)
  • Evaluation of composition and mineral structure of callus tissue in rat femoral fracture.
  • 2014
  • Ingår i: Journal of Biomedical Optics. - 1083-3668. ; 19:2
  • Tidskriftsartikel (refereegranskat)abstract
    • ABSTRACT. Callus formation is a critical step for successful fracture healing. Little is known about the molecular composition and mineral structure of the newly formed tissue in the callus. The aim was to evaluate the feasibility of small angle x-ray scattering (SAXS) to assess mineral structure of callus and cortical bone and if it could provide complementary information with the compositional analyses from Fourier transform infrared (FTIR) microspectroscopy. Femurs of 12 male Sprague-Dawley rats at 9 weeks of age were fractured and fixed with an intramedullary 1.1 mm K-wire. Fractures were treated with the combinations of bone morphogenetic protein-7 and/or zoledronate. Rats were sacrificed after 6 weeks and both femurs were prepared for FTIR and SAXS analysis. Significant differences were found in the molecular composition and mineral structure between the fracture callus, fracture cortex, and control cortex. The degree of mineralization, collagen maturity, and degree of orientation of the mineral plates were lower in the callus tissue than in the cortices. The results indicate the feasibility of SAXS in the investigation of mineral structure of bone fracture callus and provide complementary information with the composition analyzed with FTIR. Moreover, this study contributes to the limited FTIR and SAXS data in the field.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy