SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Lam Ying Wai) "

Search: WFRF:(Lam Ying Wai)

  • Result 1-6 of 6
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  • 2021
  • swepub:Mat__t
  •  
3.
  • Glasbey, JC, et al. (author)
  • 2021
  • swepub:Mat__t
  •  
4.
  • 2021
  • swepub:Mat__t
  •  
5.
  • van der Velden, Jos L., et al. (author)
  • TGF-β1-induced deposition of provisional extracellular matrix by tracheal basal cells promotes epithelial-to-mesenchymal transition in a c-Jun NH2-terminal kinase-1-dependent manner
  • 2018
  • In: American Journal of Physiology: Lung Cellular and Molecular Physiology. - : American Physiological Society. - 1522-1504 .- 1040-0605. ; 314:6, s. 984-997
  • Journal article (peer-reviewed)abstract
    • Epithelial cells have been suggested as potential drivers of lung fibrosis, although the epithelial-dependent pathways that promote fibrogenesis remain unknown. Extracellular matrix is increasingly recognized as an environment that can drive cellular responses in various pulmonary diseases. In this study, we demonstrate that transforming growth factor-β1 (TGF-β1)-stimulated mouse tracheal basal (MTB) cells produce provisional matrix proteins in vitro, which initiate mesenchymal changes in subsequently freshly plated MTB cells via Rho kinase-and c-Jun NH2-terminal kinase (JNK1)-dependent processes. Repopulation of decellularized lung scaffolds, derived from mice with bleomycin-induced fibrosis or from patients with idiopathic pulmonary fibrosis, with wild-type MTB cells resulted in a loss of epithelial gene expression and augmentation of mesenchymal gene expression compared with cells seeded into decellularized normal lungs. In contrast, Jnk1-/- basal cells seeded into fibrotic lung scaffolds retained a robust epithelial expression profile, failed to induce mesenchymal genes, and differentiated into club cell secretory protein-expressing cells. This new paradigm wherein TGF-β1-induced extracellular matrix derived from MTB cells activates a JNK1-dependent mesenchymal program, which impedes subsequent normal epithelial cell homeostasis, provides a plausible scenario of chronic aberrant epithelial repair, thought to be critical in lung fibrogenesis. This study identifies JNK1 as a possible target for inhibition in settings wherein reepithelialization is desired.
  •  
6.
  • Wrenn, Sean M, et al. (author)
  • Avian lungs : A novel scaffold for lung bioengineering
  • 2018
  • In: PLoS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 13:6, s. 0198956-0198956
  • Journal article (peer-reviewed)abstract
    • Allogeneic lung transplant is limited both by the shortage of available donor lungs and by the lack of suitable long-term lung assist devices to bridge patients to lung transplantation. Avian lungs have different structure and mechanics resulting in more efficient gas exchange than mammalian lungs. Decellularized avian lungs, recellularized with human lung cells, could therefore provide a powerful novel gas exchange unit for potential use in pulmonary therapeutics. To initially assess this in both small and large avian lung models, chicken (Gallus gallus domesticus) and emu (Dromaius novaehollandiae) lungs were decellularized using modifications of a detergent-based protocol, previously utilized with mammalian lungs. Light and electron microscopy, vascular and airway resistance, quantitation and gel analyses of residual DNA, and immunohistochemical and mass spectrometric analyses of remaining extracellular matrix (ECM) proteins demonstrated maintenance of lung structure, minimal residual DNA, and retention of major ECM proteins in the decellularized scaffolds. Seeding with human bronchial epithelial cells, human pulmonary vascular endothelial cells, human mesenchymal stromal cells, and human lung fibroblasts demonstrated initial cell attachment on decellularized avian lungs and growth over a 7-day period. These initial studies demonstrate that decellularized avian lungs may be a feasible approach for generating functional lung tissue for clinical therapeutics.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-6 of 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view