SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Langtangen Hans Petter) "

Sökning: WFRF:(Langtangen Hans Petter)

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Sletholt, Magnus Thorstein, et al. (författare)
  • A literature review of agile practices and their effects in scientific software development
  • 2011
  • Ingår i: [Host publication title missing]. - New York, NY, USA : ACM. - 9781450305983 ; , s. 1-9
  • Konferensbidrag (refereegranskat)abstract
    • The nature of scientific research and the development of scientific software have similarities with processes that follow the agile manifesto: responsiveness to change and collaboration are of the utmost importance. But how well do current scientific software development processes match the practices found in agile development methods, and what are the effects of using agile practices in such processes? In order to investigate this, we conduct a literature review, focusing on evaluating the agility present in a selection of scientific software projects. Both projects with intentionally agile practices and projects with a certain degree of agile elements are taken into consideration. In the agility assessment, we define and utilize an agile mapping chart. The elements of the mapping chart are based on Scrum and XP, thus covering two of the most prominent agile reference models. We compared the findings of the literature review to results of a previously conducted survey. The comparison indicates that scientific software development projects adopting agile practices perceive their testing to be better than average. No difference to average projects was perceived regarding requirements-related activities. Future work includes an in-depth case study to further investigate the existence and impact of agility in three large scientific software projects, ultimately aiming at a better understanding of the particularities involved in developing scientific software.
  •  
2.
  • Langtangen, Hans Petter, et al. (författare)
  • Solving PDEs in Python
  • 2016
  • Bok (övrigt vetenskapligt/konstnärligt)abstract
    • This book offers a concise and gentle introduction to finite element programming in Python based on the popular FEniCS software library. Using a series of examples, including the Poisson equation, the equations of linear elasticity, the incompressible Navier–Stokes equations, and systems of nonlinear advection–diffusion–reaction equations, it guides readers through the essential steps to quickly solving a PDE in FEniCS, such as how to define a finite variational problem, how to set boundary conditions, how to solve linear and nonlinear systems, and how to visualize solutions and structure finite element Python programs.
  •  
3.
  •  
4.
  • Ljungberg, Malin, 1962- (författare)
  • Design of High Performance Computing Software for Genericity and Variability
  • 2007
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Computer simulations have emerged as a cost efficient complement to laboratory experiments, as computers have become increasingly powerful. The aim of the present work is to explore the ideas of some state of the art software development practices, and ways in which these can be useful for developing high performance research codes. The introduction of these practices, and the modular designs that they give rise to, raises issues regarding a potential conflict between runtime efficiency on one hand and development efficiency on the other. Flexible software modules, based on mathematical abstractions, will provide support for convenient implementation and modification of numerical operators. Questions still remain about whether such modules will provide the efficiency which is required for high performance applications. To answer these questions, investigations were performed within two different problem domains. The first domain consisted of modular frameworks for the numerical solution of Partial Differential Equations. Such frameworks proved a suitable setting, since several of my research questions revolved around the issue of modularity. The second problem domain was that of symmetry exploiting algorithms. These algorithms are based on group theory, and make ample use of mathematical abstractions from that field. The domain of symmetry exploiting algorithms gave us opportunities to investigate difficulties in combining modularity based on high level abstractions with low level optimizations using data layout and parallelization. In conclusion, my investigation of software development practices for the area of high performance computing has proved very fruitful indeed. I have found that none of the concerns that were raised should lead us to refrain from the use of the practices that I have considered. On the contrary, in the two case studies presented here, these practices lead to designs that perform well in terms of usability as well as runtime efficiency.
  •  
5.
  •  
6.
  •  
7.
  • Sletholt, Magnus Thorstein, et al. (författare)
  • What Do We Know about Scientific Software Development's Agile Practices?
  • 2012
  • Ingår i: Computing in Science & Engineering. - 1521-9615. ; 14:2, s. 24-36
  • Tidskriftsartikel (refereegranskat)abstract
    • The development of scientific software has similarities with processes that follow the software engineering "agile manifesto": responsiveness to change and collaboration are of utmost importance. But how well do current scientific software-development processes match the practices found in agile development methods, and what are the effects of using agile practices in such processes?
  •  
8.
  •  
9.
  • Stoverud, Karen-Helene, et al. (författare)
  • Computational Investigation of Cerebrospinal Fluid Dynamics in the Posterior Cranial Fossa and Cervical Subarachnoid Space in Patients with Chiari I Malformation
  • 2016
  • Ingår i: PLOS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 11:10
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose Previous computational fluid dynamics (CFD) studies have demonstrated that the Chiari malformation is associated with abnormal cerebrospinal fluid (CSF) flow in the cervical part of the subarachnoid space (SAS), but the flow in the SAS of the posterior cranial fossa has received little attention. This study extends previous modelling efforts by including the cerebellomedullary cistern, pontine cistern, and 4th ventricle in addition to the cervical subarachnoid space. Methods The study included one healthy control, Con1, and two patients with Chiari I malformation, P1 and P2. Meshes were constructed by segmenting images obtained from T2-weighted turbo spin-echo sequences. CFD simulations were performed with a previously verified and validated code. Patient-specific flow conditions in the aqueduct and the cervical SAS were used. Two patients with the Chiari malformation and one control were modelled. Results The results demonstrated increased maximal flow velocities in the Chiari patients, ranging from factor 5 in P1 to 14.8 in P2, when compared to Con1 at the level of Foramen Magnum (FM). Maximal velocities in the cervical SAS varied by a factor 2.3, while the maximal flow in the aqueduct varied by a factor 3.5. The pressure drop from the pontine cistern to the cervical SAS was similar in Con1 and P1, but a factor two higher in P2. The pressure drop between the aqueduct and the cervical SAS varied by a factor 9.4 where P1 was the one with the lowest pressure jump and P2 and Con1 differed only by a factor 1.6. Conclusion This pilot study demonstrates that including the posterior cranial fossa is feasible and suggests that previously found flow differences between Chiari I patients and healthy individuals in the cervical SAS may be present also in the SAS of the posterior cranial fossa.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy