SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Lee Sukyoung) "

Sökning: WFRF:(Lee Sukyoung)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Cohen, Judah, et al. (författare)
  • ARCTIC CHANGE AND POSSIBLE INFLUENCE ON MID-LATITUDE CLIMATE AND WEATHER - A US CLIVAR White Paper
  • 2018
  • Rapport (övrigt vetenskapligt/konstnärligt)abstract
    • The Arctic has warmed more than twice as fast as the global average since the mid 20th century, a phenomenon known as Arctic amplification (AA). These profound changes to the Arctic system have coincided with a period of ostensibly more frequent events of extreme weather across the Northern Hemisphere (NH) mid-latitudes, including extreme heat and rainfall events and recent severe winters. Though winter temperatures have generally warmed since 1960 over mid-to-high latitudes, the acceleration in the rate of warming at high-latitudes, relative to the rest of the NH, started approximately in 1990. Trends since 1990 show cooling over the NH continents, especially in Northern Eurasia. The possible link between Arctic change and mid-latitude climate and weather has spurred a rush of new observational and modeling studies. A number of workshops held during 2013-2014 have helped frame the problem and have called for continuing and enhancing efforts for improving our understanding of Arctic-mid-latitude linkages and its attribution to the occurrence of extreme climate and weather events. Although these workshops have outlined some of the major challenges and provided broad recommendations, further efforts are needed to synthesize the diversified research results to identify where community consensus and gaps exist. Building upon findings and recommendations of the previous workshops, the US CLIVAR Working Group on Arctic Change and Possible Influence on Mid-latitude Climate and Weather convened an international workshop at Georgetown University in Washington, DC, on February 1-3, 2017. Experts in the fields of atmosphere, ocean, and cryosphere sciences assembled to assess the rapidly evolving state of understanding, identify consensus on knowledge and gaps in research, and develop specific actions to accelerate progress within the research community. With more than 100 participants, the workshop was the largest and most comprehensive gathering of climate scientists to address the topic to date. In this white paper, we synthesize and discuss outcomes from this workshop and activities involving many of the working group members.
  •  
2.
  • Lee, Sukyoung, et al. (författare)
  • Relation Between Arctic Moisture Flux and Tropical Temperature Biases in CMIP5 Simulations and Its Fingerprint in RCP8.5 Projections
  • 2019
  • Ingår i: Geophysical Research Letters. - 0094-8276 .- 1944-8007. ; 46:2, s. 1088-1096
  • Tidskriftsartikel (refereegranskat)abstract
    • Arctic moisture intrusions have played an important role in warming the Arctic over the past few decades. A prior study found that Coupled Model Intercomparison Project Phase 5 (CMIP5) models exhibit large regional biases in the moisture flux across 70 degrees N. It is shown here that the systematic misrepresentation of the moisture flux is related to the models' overprediction of zonal wavenumber k = 2 contribution and underprediction of k = 1 contribution to the flux. Models with a warmer tropical upper troposphere and El-Nino-like tropical surface temperature tend to simulate stronger k = 2 flux, while k = 1 flux is uncorrelated with tropical upper tropospheric temperature and is associated with La-Nina-like surface temperature. The models also overpredict the transient eddy moisture flux while underpredicting the stationary eddy flux. Moreover, future projections in Representative Concentration Pathway 8.5 (RCP8.5) simulations show trends in moisture flux that is consistent with biases in historical simulations, suggesting that these CMIP5 projections reflect the same error(s) that cause the model biases. Plain Language Summary The Arctic is the region where climate change has been most rapid. A growing body of work indicates that moisture intrusions into Arctic have played an important role in warming the Arctic over the past decades. Coupled Model Intercomparison Project Phase 5 (CMIP5) models have served as a critical tool for projecting future climate changes. Therefore, it is imperative to evaluate whether the physical processes governing moisture intrusions are accurately represented by the models. It is shown here that there is a systematic misrepresentation of the moisture flux into the Arctic related to the models' biased representation of tropical temperatures. Moreover, future projections in Representative Concentration Pathway 8.5 (RCP8.5) simulations show moisture flux trends that are consistent with biases in historical simulations, suggesting that these CMIP5 projections reflect the same error(s) that cause the model biases. It is common practice to regard averages across climate model as being the true response to climate forcing. The findings here question this widespread assumption and underscore the need to pay close attention to model biases and their causes.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy