SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Li Zhifang) "

Sökning: WFRF:(Li Zhifang)

  • Resultat 1-10 av 19
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Hu, Jinhong, et al. (författare)
  • Safety and immunogenicity of a malaria vaccine, Plasmodium falciparum AMA-1/MSP-1 chimeric protein formulated in montanide ISA 720 in healthy adults
  • 2008
  • Ingår i: PLOS ONE. - : PLOS. - 1932-6203. ; 3:4
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: The P. falciparum chimeric protein 2.9 (PfCP-2.9) consisting of the sequences of MSP1-19 and AMA-1 (III) is a malaria vaccine candidate that was found to induce inhibitory antibodies in rabbits and monkeys. This was a phase I randomized, single-blind, placebo-controlled, dose-escalation study to evaluate the safety and immunogenicity of the PfCP-2.9 formulated with a novel adjuvant Montanide ISA720. Fifty-two subjects were randomly assigned to 4 dose groups of 10 participants, each receiving the test vaccine of 20, 50, 100, or 200 microg respectively, and 1 placebo group of 12 participants receiving the adjuvant only.METHODS AND FINDINGS: The vaccine formulation was shown to be safe and well-tolerated, and none of the participants withdrew. The total incidence of local adverse events (AEs) was 75%, distributed among 58% of the placebo group and 80% of those vaccinated. Among the vaccinated, 65% had events that were mild and 15% experienced moderate AEs. Almost all systemic adverse reactions observed in this study were graded as mild and required no therapy. The participants receiving the test vaccine developed detectable antibody responses which were boosted by the repeated vaccinations. Sixty percent of the vaccinated participants had high ELISA titers (>1:10,000) of antigen-specific antibodies which could also recognize native parasite proteins in an immunofluorescence assay (IFA).CONCLUSION: This study is the first clinical trial for this candidate and builds on previous investigations supporting PfCP-2.9/ISA720 as a promising blood-stage malaria vaccine. Results demonstrate safety, tolerability (particularly at the lower doses tested) and immunogenicity of the formulation. Further clinical development is ongoing to explore optimizing the dose and schedule of the formulation to decrease reactogenicity without compromising immunogenicity.TRIAL REGISTRATION: Chinese State Food and Drug Administration (SFDA) 2002SL0046; Controlled-Trials.com ISRCTN66850051 [66850051].
  •  
2.
  • Huang, Liping, et al. (författare)
  • Interim effects of salt substitution on urinary electrolytes and blood pressure in the China Salt Substitute and Stroke Study (SSaSS).
  • 2020
  • Ingår i: American Heart Journal. - : Elsevier BV. - 0002-8703 .- 1097-6744. ; 221, s. 136-145
  • Tidskriftsartikel (refereegranskat)abstract
    • The Salt Substitute and Stroke Study is an ongoing 5-year large-scale cluster randomized trial investigating the effects of potassium-enriched salt substitute compared to usual salt on the risk of stroke. The study involves 600 villages and 20,996 individuals in rural China. Intermediate risk markers were measured in a random subsample of villages every 12 months over 3 years to track progress against key assumptions underlying study design. Measures of 24-hour urinary sodium, 24-hour urinary potassium, blood pressure and participants' use of salt substitute were recorded, with differences between intervention and control groups estimated using generalized linear mixed models. The primary outcome of annual event rate in the two groups combined was determined by dividing confirmed fatal and non-fatal strokes by total follow-up time in the first 2 years. The mean differences (95% CI) were -0.32 g (-0.68 to 0.05) for 24-hour urinary sodium, +0.77 g (+0.60 to +0.93) for 24-hour urinary potassium, -2.65 mmHg (-4.32 to -0.97) for systolic blood pressure and +0.30 mmHg (-0.72 to +1.32) for diastolic blood pressure. Use of salt substitute was reported by 97.5% in the intervention group versus 4.2% in the control group (P<.0001). The overall estimated annual event rate for fatal and non-fatal stroke was 3.2%. The systolic blood pressure difference and the annual stroke rate were both in line with the statistical assumptions underlying study design. The trial should be well placed to address the primary hypothesis at completion of follow-up.
  •  
3.
  • Li, Mian, et al. (författare)
  • Halogenated Ti3C2 MXenes with Electrochemically Active Terminals for High-Performance Zinc Ion Batteries
  • 2021
  • Ingår i: ACS Nano. - : AMER CHEMICAL SOC. - 1936-0851 .- 1936-086X. ; 15:1, s. 1077-1085
  • Tidskriftsartikel (refereegranskat)abstract
    • The class of two-dimensional metal carbides and nitrides known as MXenes offer a distinct manner of property tailoring for a wide range of applications. The ability to tune the surface chemistry for expanding the property space of MXenes is thus an important topic, although experimental exploration of surface terminals remains a challenge. Here, we synthesized Ti3C2 MXene with unitary, binary, and ternary halogen terminals, e.g., -Cl, -Br, -I, -BrI, and -ClBrI, to investigate the effect of surface chemistry on the properties of MXenes. The electrochemical activity of Br and I elements results in the extraordinary electrochemical performance of the MXenes as cathodes for aqueous zinc ion batteries. The -Br- and -I-containing MXenes, e.g., Ti3C2Br2 and Ti3C2I2, exhibit distinct discharge platforms with considerable capacities of 97.6 and 135 mA.g(-1). Ti3C2 (BrI) and Ti3C2 (ClBrI) exhibit dual discharge platforms with capacities of 117.2 and 106.7 mAh.g(-1). In contrast, the previously discovered MXenes Ti3C2Cl2 and Ti3C2 (OF) exhibit no discharge platforms and only similar to 50% of capacities and energy densities of Ti3C2Br2. These results emphasize the effectiveness of the Lewis-acidic-melt etching route for tuning the surface chemistry of MXenes and also show promise for expanding the MXene family toward various applications.
  •  
4.
  • Li, Yunyun, et al. (författare)
  • Understanding Enhanced Microbial MeHg Production in Mining-Contaminated Paddy Soils under Sulfate Amendment : Changes in Hg Mobility or Microbial Methylators?
  • 2019
  • Ingår i: Environmental Science and Technology. - : American Chemical Society (ACS). - 0013-936X .- 1520-5851. ; 53:4, s. 1844-1852
  • Tidskriftsartikel (refereegranskat)abstract
    • Elevated methylmercury (MeHg) production in mining-contaminated paddy soils, despite the high fraction of refractory HgS(s), has been frequently reported, while the underlying mechanisms are not fully understood. Here, we hypothesized that sulfate input, via fertilization, rainfall, and irrigation, is critical in mobilizing refractory HgS(s) and thus enhancing Hg methylation in mining-contaminated paddy soils. To test this hypothesis, the effects of sulfate amendment on Hg methylation and MeHg bioaccumulation in mining-contaminated soil-rice systems were examined. The results indicated 28-61% higher net MeHg production in soils under sulfate amendment (50-1000 mg kg-1), which in turn increased grain MeHg levels by 22-55%. The enhancement of Hg methylation by Hg mobilization in sulfate-amended soils was supported by two observations: (1) the increased Hg(aq) release from HgS(s), the dominant Hg species in the paddy soils, in the presence of sulfide produced following sulfate reduction and (2) the decreases of refractory HgS(s) in soils under sulfate amendment. By contrast, changes in the abundances/activities of potential microbial Hg methylators in different Hg-contaminated soils were not significant following sulfate amendment. Our results highlight the importance to consider enhanced Hg mobility and thus methylation in soils under sulfate amendment.
  •  
5.
  • Ding, Haoming, et al. (författare)
  • Chemical scissor-mediated structural editing of layered transition metal carbides
  • 2023
  • Ingår i: Science. - : AMER ASSOC ADVANCEMENT SCIENCE. - 0036-8075 .- 1095-9203. ; 379:6637, s. 1130-1135
  • Tidskriftsartikel (refereegranskat)abstract
    • Intercalated layered materials offer distinctive properties and serve as precursors for important two-dimensional (2D) materials. However, intercalation of non-van der Waals structures, which can expand the family of 2D materials, is difficult. We report a structural editing protocol for layered carbides (MAX phases) and their 2D derivatives (MXenes). Gap-opening and species-intercalating stages were respectively mediated by chemical scissors and intercalants, which created a large family of MAX phases with unconventional elements and structures, as well as MXenes with versatile terminals. The removal of terminals in MXenes with metal scissors and then the stitching of 2D carbide nanosheets with atom intercalation leads to the reconstruction of MAX phases and a family of metal-intercalated 2D carbides, both of which may drive advances in fields ranging from energy to printed electronics.
  •  
6.
  • Ding, Haoming, et al. (författare)
  • Synthesis of MAX phases Nb2CuC and Ti2(Al0.1Cu0.9)N by A-site replacement reaction in molten salts
  • 2019
  • Ingår i: Materials Research Letters. - : Taylor & Francis. - 2166-3831. ; 7:12, s. 510-516
  • Tidskriftsartikel (refereegranskat)abstract
    • New MAX phases Ti2(AlxCu1−x)N and Nb2CuC were synthesized by A-site replacement by reacting Ti2AlN and Nb2AlC, respectively, with CuCl2 or CuI molten salt. X-ray diffraction, scanning electron microscopy, and atomically resolved scanning transmission electron microscopy showed complete A-site replacement in Nb2AlC, which lead to the formation of Nb2CuC. However, the replacement of Al in Ti2AlN phase was only close to complete at Ti2(Al0.1Cu0.9)N. Density-functional theory calculations corroborated the structural stability of Nb2CuC and Ti2CuN phases. Moreover, the calculated cleavage energy in these Cu-containing MAX phases are weaker than in their Al-containing counterparts.The preparation of MAX phases Nb2CuC and Ti2(Al0.1Cu0.9)N were realized by A-site replacement in Ti2AlN and Nb2AlN, respectively.
  •  
7.
  • Li, Mian, et al. (författare)
  • Element Replacement Approach by Reaction with Lewis Acidic Molten Salts to Synthesize Nanolaminated MAX Phases and MXenes
  • 2019
  • Ingår i: Journal of the American Chemical Society. - : AMER CHEMICAL SOC. - 0002-7863 .- 1520-5126. ; 141:11, s. 4730-4737
  • Tidskriftsartikel (refereegranskat)abstract
    • Nanolaminated materials are important because of their exceptional properties and wide range of applications. Here, we demonstrate a general approach to synthesizing a series of Zn-based MAX phases and Cl-terminated MXenes originating from the replacement reaction between the MAX phase and the late transition-metal halides. The approach is a top-down route that enables the late transitional element atom (Zn in the present case) to occupy the A site in the pre-existing MAX phase structure. Using this replacement reaction between the Zn element from molten ZnCl2 and the Al element in MAX phase precursors (Ti3AlC2, Ti2AlC, Ti2AlN, and V2AlC), novel MAX phases Ti3ZnC2, Ti2ZnC, Ti2ZnN, and V2ZnC were synthesized. When employing excess ZnCl2, Cl-terminated MXenes (such as Ti3C2Cl2 and Ti2CCl2) were derived by a subsequent exfoliation of Ti3ZnC2 and Ti2ZnC due to the strong Lewis acidity of molten ZnCl2. These results indicate that A-site element replacement in traditional MAX phases by late transition-metal halides opens the door to explore MAX phases that are not thermodynamically stable at high temperature and would be difficult to synthesize through the commonly employed powder metallurgy approach. In addition, this is the first time that exclusively Cl-terminated MXenes were obtained, and the etching effect of Lewis acid in molten salts provides a green and viable route to preparing MXenes through an HF-free chemical approach.
  •  
8.
  • Li, Youbing, et al. (författare)
  • A general Lewis acidic etching route for preparing MXenes with enhanced electrochemical performance in non-aqueous electrolyte
  • 2020
  • Ingår i: Nature Materials. - : NATURE PUBLISHING GROUP. - 1476-1122 .- 1476-4660. ; 19:8, s. 894-899
  • Tidskriftsartikel (refereegranskat)abstract
    • Two-dimensional transition metal carbides and nitrides, known as MXenes, are currently considered as energy storage materials. A generic Lewis acidic etching route for preparing high-rate negative-electrode MXenes with enhanced electrochemical performance in non-aqueous electrolyte is now proposed. Two-dimensional carbides and nitrides of transition metals, known as MXenes, are a fast-growing family of materials that have attracted attention as energy storage materials. MXenes are mainly prepared from Al-containing MAX phases (where A = Al) by Al dissolution in F-containing solution; most other MAX phases have not been explored. Here a redox-controlled A-site etching of MAX phases in Lewis acidic melts is proposed and validated by the synthesis of various MXenes from unconventional MAX-phase precursors with A elements Si, Zn and Ga. A negative electrode of Ti3C2 MXene material obtained through this molten salt synthesis method delivers a Li+ storage capacity of up to 738 C g(-1) (205 mAh g(-1)) with high charge-discharge rate and a pseudocapacitive-like electrochemical signature in 1 M LiPF6 carbonate-based electrolyte. MXenes prepared via this molten salt synthesis route may prove suitable for use as high-rate negative-electrode materials for electrochemical energy storage applications.
  •  
9.
  • Li, Youbing, et al. (författare)
  • A-site alloying-guided universal design of noble metal-based MAX phases
  • 2024
  • Ingår i: Matter. - : Cell Press. - 2590-2393 .- 2590-2385. ; 7:2, s. 523-538
  • Tidskriftsartikel (refereegranskat)abstract
    • Mn+1AXn (MAX) phases have attracted significant attention due to their structural diversity and potential applications. Designing MAX phases with single-atom-thick A layers featuring 4d/5d-orbital electronic elements is interesting work. Here, we present a comprehensive report on noble metal-based M2(A1-xA′x)C (M = V, Ti, Nb; A = Al, Sn, In, Ga, Ge; A′ = Ru, Rh, Pd, Ir, Pt, Au and combinations thereof; 0 < x ≤ 0.4) phases featuring A sublayers of 4d/5d-orbital electronic elements through an A-site alloying strategy. The chemical composition of MAX phases can be adjusted by selecting different M- and A-site elements, with morphology tailored by distinct C sources. Furthermore, the V2(Sn0.8Pt0.2)C (15.7 wt % Pt) catalyst showed better performance for hydrogen evolution reaction compared to the commercial Pt/C (20 wt % Pt) electrode. This study highlights the prospects of A-site alloying for the design of novel MAX phases with unique properties and promising applications in electrocatalysis and beyond.
  •  
10.
  • Li, Youbing, et al. (författare)
  • Electrochemical Lithium Storage Performance of Molten Salt Derived V2SnC MAX Phase
  • 2021
  • Ingår i: Nano-Micro Letters. - : Springer. - 2311-6706 .- 2150-5551. ; 13:1
  • Tidskriftsartikel (refereegranskat)abstract
    • MAX phases are gaining attention as precursors of two-dimensional MXenes that are intensively pursued in applications for electrochemical energy storage. Here, we report the preparation of V2SnC MAX phase by the molten salt method. V2SnC is investigated as a lithium storage anode, showing a high gravimetric capacity of 490 mAh g(-1) and volumetric capacity of 570 mAh cm(-3) as well as superior rate performance of 95 mAh g(-1) (110 mAh cm(-3)) at 50 C, surpassing the ever-reported performance of MAX phase anodes. Supported by operando X-ray diffraction and density functional theory, a charge storage mechanism with dual redox reaction is proposed with a Sn-Li (de)alloying reaction that occurs at the edge sites of V2SnC particles where Sn atoms are exposed to the electrolyte followed by a redox reaction that occurs at V2C layers with Li. This study offers promise of using MAX phases with M-site and A-site elements that are redox active as high-rate lithium storage materials.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 19

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view