SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Lingnert H) "

Sökning: WFRF:(Lingnert H)

  • Resultat 1-10 av 10
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  •  
4.
  • Lingnert, H, et al. (författare)
  • Acrylamide in food: mechanism of formation and influencing factors during heating of foods
  • 2002
  • Ingår i: Scandinavian Journal of Food and Nutrition. - : Informa UK Limited. - 1748-2976. ; 46:4, s. 159-172
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: In April 2002, the Swedish National Food Administration and a scientific group at the University of Stockholm jointly announced that they had shown acrylamide to be formed during the preparation of food and found it to occur in many foodstuffs. These new findings were clearly of concern to many types of industrial food processing as well as to home cooking. The Swedish Food Federation (Li) initiated and financed the formation of an expert committee to look into the chemical mechanisms. The present review is the final report of that expert committee. Design: The study identified, examined and put together facts and present knowledge on reaction routes for acrylamide formation in food and causal connections to cooking and food processing conditions. The results are based on literature surveys, examination of the analytical data published by the Swedish National Food Administration and other follow-up studies, contacts with international scientific networks, and observations from food companies. Results: The exact chemical mechanism(s) for acrylamide formation in heated foods is unknown. Several plausible mechanistic routes may be suggested, involving reactions of carbohydrates, proteins/amino acids, lipids and probably also other food components as precursors. With the data and knowledge available today it is not possible to point out any specific routes, or to exclude any possibilities. It is likely that a multitude of reaction mechanisms is involved. Acrolein is one strong precursor candidate, the origin of which could be lipids, carbohydrates or proteins/amino acids. Acrylamide is a reactive molecule and it can readily react with various other components in the food. The actual acrylamide level in a specific food product, therefore, probably reflects the balance between ease of formation and potential for further reactions in that food matrix. There are indications in support of that the Maillard reaction being an important reaction route for acrylamide formation, but lipid degradation pathways to the formation of acrolein should also be considered. Conclusions: Reliable analytical methods to measure acrylamide in foods are available. Model studies are needed to identify precursors and reaction route(s) based on current hypotheses and to elucidate possible further reactions between acrylamide and other food components. Studies are needed to optimize formulation and processing conditions to minimize acrylamide levels, taking other product quality properties into consideration.
  •  
5.
  •  
6.
  •  
7.
  •  
8.
  •  
9.
  • Skog, Kerstin, et al. (författare)
  • CIAA-workshop kring akrylamid
  • 2006
  • Ingår i: Livsmedel i Fokus. - 1652-912X.
  • Tidskriftsartikel (populärvet., debatt m.m.)
  •  
10.
  • Taeymans, D., et al. (författare)
  • A review of acrylamide : An industry perspective on research, analysis, formation, and control
  • 2004
  • Ingår i: Critical reviews in food science and nutrition. - : Informa UK Limited. - 1040-8398 .- 1549-7852. ; 44:5, s. 323-347
  • Tidskriftsartikel (refereegranskat)abstract
    • Acrylamide is a synthetic monomer with a wide scope of industrial applications, mainly as a precursor in the production of several polymers, such as polyacrylamide. The main uses of polyacrylamides are in water and wastewater treatment processes, pulp and paper processing, and mining and mineral processing. The announcement by the Swedish National Food Administration in April 2002 of the presence of acrylamide predominantly in heat-treated carbohydrate-rich foods sparked intensive investigations into acrylamide, encompassing the occurrence, chemistry, agricultural practices, and toxicology, in order to establish if there is a potential risk to human health from the presence of this contaminant in the human diet. The link of acrylamide in foods to the Maillard reaction and, in particular, to the amino acid asparagine has been a major step forward in elucidating the first feasible chemical route of formation during the preparation and processing of food. Other probably minor pathways have also been proposed, including acrolein and acrylic acid. This review addresses the analytical and mechanistic aspects of the acrylamide issue and summarizes the progress made to date by the European food industries in these key areas. Essentially, it presents experimental results generated under laboratory model conditions, as well as under actual food processing conditions covering different food categories, such as potatoes, biscuits, cereals, and coffee. Since acrylamide formation is closely linked to food composition, factors such as the presence of sugars and availability of free amino acids are also considered. Many new findings that contribute towards a better understanding of the formation and presence of acrylamide in foods are presented. Many national authorities across the world are assessing the dietary exposure of consumers to acrylamide, and scientific projects have commenced to gather new information about the toxicology of acrylamide. These are expected to provide new scientific knowledge that will help to clarify whether or not there is a risk to human health from the consumption of foods containing law amounts of acrylamide.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 10

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy