SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Linxweiler Jan) "

Sökning: WFRF:(Linxweiler Jan)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Anzt, Hartwig, et al. (författare)
  • An environment for sustainable research software in Germany and beyond: current state, open challenges, and call for action
  • 2020
  • Ingår i: F1000 Research. - : F1000 Research Ltd. - 2046-1402. ; 9
  • Tidskriftsartikel (refereegranskat)abstract
    • Research software has become a central asset in academic research. It optimizes existing and enables new research methods, implements and embeds research knowledge, and constitutes an essential research product in itself. Research software must be sustainable in order to understand, replicate, reproduce, and build upon existing research or conduct new research effectively. In other words, software must be available, discoverable, usable, and adaptable to new needs, both now and in the future. Research software therefore requires an environment that supports sustainability. Hence, a change is needed in the way research software development and maintenance are currently motivated, incentivized, funded, structurally and infrastructurally supported, and legally treated. Failing to do so will threaten the quality and validity of research. In this paper, we identify challenges for research software sustainability in Germany and beyond, in terms of motivation, selection, research software engineering personnel, funding, infrastructure, and legal aspects. Besides researchers, we specifically address political and academic decision-makers to increase awareness of the importance and needs of sustainable research software practices. In particular, we recommend strategies and measures to create an environment for sustainable research software, with the ultimate goal to ensure that software-driven research is valid, reproducible and sustainable, and that software is recognized as a first class citizen in research. This paper is the outcome of two workshops run in Germany in 2019, at deRSE19 - the first International Conference of Research Software Engineers in Germany - and a dedicated DFG-supported follow-up workshop in Berlin.
  •  
2.
  • Axner, Lilit, et al. (författare)
  • Performance evaluation of a Parallel Sparse Lattice Boltzmann Solver
  • 2008
  • Ingår i: Journal of Computational Physics. - : Elsevier BV. - 0021-9991 .- 1090-2716. ; 227:10, s. 4895-4911
  • Tidskriftsartikel (refereegranskat)abstract
    • We develop a performance prediction model for a parallelized sparse lattice Boltzmann solver and present performance results for simulations of flow in a variety of complex geometries. A special focus is on partitioning and memory/load balancing strategy for geometries with a high solid fraction and/or complex topology such as porous media, fissured rocks and geometries from medical applications. The topology of the lattice nodes representing the fluid fraction of the computational domain is mapped on a graph. Graph decomposition is performed with both multilevel recursive-bisection and multilevel k-way schemes based on modified Kernighan–Lin and Fiduccia–Mattheyses partitioning algorithms. Performance results and optimization strategies are presented for a variety of platforms, showing a parallel efficiency of almost 80% for the largest problem size. A good agreement between the performance model and experimental results is demonstrated.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy