SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Malusek Alexandr 1968 ) "

Sökning: WFRF:(Malusek Alexandr 1968 )

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Jeuthe, Julius, et al. (författare)
  • Semi-Automated 3D Segmentation of Pelvic Region Bones in CT Volumes for the Annotation of Machine Learning Datasets
  • 2021
  • Ingår i: Radiation Protection Dosimetry. - : Oxford University Press. - 0144-8420 .- 1742-3406. ; 195:3-4, s. 172-176
  • Tidskriftsartikel (refereegranskat)abstract
    • Automatic segmentation of bones in computed tomography (CT) images is used for instance in beam hardening correction algorithms where it improves the accuracy of resulting CT numbers. Of special interest are pelvic bones, which—because of their strong attenuation—affect the accuracy of brachytherapy in this region. This work evaluated the performance of the JJ2016 algorithm with the performance of MK2014v2 and JS2018 algorithms; all these algorithms were developed by authors. Visual comparison, and, in the latter case, also Dice similarity coefficients derived from the ground truth were used. It was found that the 3D-based JJ2016 performed better than the 2D-based MK2014v2, mainly because of the more accurate hole filling that benefitted from information in adjacent slices. The neural network-based JS2018 outperformed both traditional algorithms. It was, however, limited to the resolution of 1283 owing to the limited amount of memory in the graphical processing unit (GPU).
  •  
2.
  • Kaveckyte, Vaiva, 1991- (författare)
  • Development of Experimental Brachytherapy Dosimetry Using Monte Carlo Simulations for Detector Characterization
  • 2021
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Brachytherapy (BT) is a type of interventional radiotherapy that is advantageous due to high absorbed dose conformity and possibility to deliver high dose in few fractions. It is often used for prostate and gynecological tumors as monotherapy or a boost alongside external beam radiotherapy (EBRT). However, there is a number of things that can compromise treatment delivery, starting from incorrect source data in a treatment planning system to malfunctioning of a treatment delivery unit. None of the established quality assurance (QA) procedures emulate treatment delivery where the planned dose could be compared with the experimentally determined value. While such practices are employed in EBRT, BT suffers from the lack of detectors that would be water-equivalent and convenient to use for regular measurements. First-choice thermoluminescence dosimeters are water-equivalent but have passive readout. Sporadic attempts to use other detectors have not led to any established practices at clinical sites. Stepping ahead, the safety of treatment delivery could be further evaluated using real-time in vivo dosimetry. If detectors were characterized with high-accuracy, a reliable error detection level could be set to terminate treatments if needed. Contrary to in-phantom QA, there are detectors suitable for such applications but their characterization is incomplete. In this thesis we address both problems.Focusing on high-dose-rate 192Ir remote afterloading treatments, which are among the most common in BT, we investigate and propose a direct readout synthetic diamond detector for in-phantom QA of treatment units. The detector was designed for small-field high-energy EBRT dosimetry but our findings demonstrate its suitability for BT dosimetry. Additionally, due to detector calibration with traceability to absorbed dose to water primary standards of high-energy photon beams and combined experimental and Monte Carlo (MC) characterization, the uncertainties in absorbed dose to water were comparable to passive readout detectors and lower than for other direct readout detectors. We complemented detector investigation with a theoretical study on diamond material properties and which values (mass density, mean excitation energy, number of conduction electrons per atom) shall be used for the most faithful description of ionizing radiation interactions in diamond for MC simulations and calculations of mass electronic stopping power. The findings improve diamond dosimetry accuracy, and subsequently, experimental dosimetry of not only BT but all radiotherapy beam qualities where the detectors are used.Aiming to further contribute to experimental BT dosimetry, we focused on high atomic number inorganic scintillators used for in vivo dosimetry: ZnSe, CsI, and Al2O3. These are already existing dosimeters exhibiting promising luminescence properties, but until now, their investigation has been solely experimental. MC simulations are not subject to detector positioning uncertainties which are high due to steep dose gradients and other detector response artifacts, thus we used the method to investigate the absorbed-dose energy response of detectors, its dependence on radial distance and polar angles, scatter conditions, as well as detector design. We clarified how error-prone high atomic number detector characterization might be if experimental and MC methods are not combined. Both have certain limitations and have to complement each other.Though the thesis addresses two different types of detectors for two different applications, the underlying theme is to understand the detector at hand. The use of MC simulations allowed introducing a new synthetic diamond detector into BT field and improving accuracy of in vivo dosimetry systems using inorganic scintillators. We also raised awareness to the lack of unified detector calibration and characterization practice in BT dosimetry.
  •  
3.
  • Magnusson, Maria, 1961-, et al. (författare)
  • ACCURACY OF CT NUMBERS OBTAINED BY DIRA AND MONOENERGETIC PLUS ALGORITHMS IN DUAL-ENERGY COMPUTED TOMOGRAPHY
  • 2021
  • Ingår i: Radiation Protection Dosimetry. - : Oxford University Press. - 0144-8420 .- 1742-3406. ; 195:3-4, s. 212-217
  • Tidskriftsartikel (refereegranskat)abstract
    • Dual-energy computed tomography (CT) can be used in radiotherapy treatment planning for the calculation of absorbed dose distributions. The aim of this work is to evaluate whether there is room for improvement in the accuracy of the Monoenergetic Plus algorithm by Siemens Healthineers. A Siemens SOMATOM Force scanner was used to scan a cylindrical polymethyl methacrylate phantom with four rod-inserts made of different materials. Images were reconstructed using ADMIRE and processed with Monoenergetic Plus. The resulting CT numbers were compared with tabulated values and values simulated by the proof-of-a-concept algorithm DIRA developed by the authors. Both the Monoenergetic Plus and DIRA algorithms performed well; the accuracy of attenuation coefficients was better than about ±1% at the energy of 70 keV. Compared with DIRA, the worse performance of Monoenergetic Plus was caused by its (i) two-material decomposition to iodine and water and (ii) imperfect suppression of the beam hardening artifact in ADMIRE.
  •  
4.
  • Magnusson, Maria, 1961-, et al. (författare)
  • On the Choice of Base Materials for Alvarez–Macovski and DIRA Dual-energy Reconstruction Algorithms in CT
  • 2023
  • Ingår i: Photon Counting Computed Tomography. - Cham : Springer. - 9783031260629 - 9783031260612 ; , s. 153-175
  • Bokkapitel (refereegranskat)abstract
    • The choice of the material base to which the material decomposition is performed in dual-energy computed tomography may affect the quality of reconstructed images. Resulting inaccuracies may lower their diagnostic value, or if the data are used for radiation treatment planning, the accuracy of such plans. The aim of this work is to investigate how the commonly used (water, bone) (WB), (water, iodine) (WI), and (approximate photoelectric effect, Compton scattering) (PC) doublets affect the reconstructed linear attenuation coefficient in the case of the Alvarez–Macovski (AM) method. The performance of this method is also compared to the performance of the dual-energy iterative reconstruction algorithm DIRA. In both cases, the study is performed using simulations.The results show that the PC and WB doublets accurately predicted the linear attenuation coefficient (LAC) values for human tissues and elements with Z = 1, …, 20, in the 20–150 keV range, though there was a small (<5% discrepancy in the 20–35 keV range. The WI doublet did not represent the tissues as well as PC and WB; the largest discrepancies (>50% in some cases) were in the 20–40 keV range.LACs reconstructed with the AM and DIRA followed this trend. AM produced artifacts when iodine was present in the phantom together with human tissues since AM can only work with one doublet at a time. It was shown that these artifacts could be avoided with DIRA using different doublets at different spatial positions, i.e., WB for soft and bone tissue and WI for the iodine solution.
  •  
5.
  • Magnusson, Maria, 1961-, et al. (författare)
  • Optimal Selection of Base Materials for Accurate Dual-Energy Computed Tomography : Comparison Between the Alvarez–Macovski Method and DIRA
  • 2021
  • Ingår i: Radiation Protection Dosimetry. - : Oxford University Press. - 0144-8420 .- 1742-3406. ; 195:3-4, s. 218-224
  • Tidskriftsartikel (refereegranskat)abstract
    • The choice of the material base to which the material decomposition is performed in dual-energy computed tomography may affect the quality of reconstructed images. The aim of this work is to investigate how the commonly used bases (water, bone), (water, iodine) and (photoelectric effect, Compton scattering) affect the reconstructed linear attenuation coefficient in the case of the Alvarez–Macovski method. The performance of this method is also compared with the performance of the Dual-energy Iterative Reconstruction Algorithm (DIRA). In both cases, the study is performed using simulations. The results show that the Alvarez–Macovski method produced artefacts when iodine was present in the phantom together with human tissues since this method can only work with one doublet. It was shown that these artefacts could be avoided with DIRA using the (water, bone) doublet for tissues and the (water, iodine) doublet for the iodine solution.
  •  
6.
  • Malusek, Alexandr, 1968-, et al. (författare)
  • On The Possibility To Resolve Gadolinium- And Cerium-Based Contrast Agents From Their CT Numbers In Dual-Energy Computed Tomography
  • 2021
  • Ingår i: Radiation Protection Dosimetry. - : Oxford University Press. - 0144-8420 .- 1742-3406. ; 195:3-4, s. 225-231
  • Tidskriftsartikel (refereegranskat)abstract
    • Cerium oxide nanoparticles with integrated gadolinium have been proved to be useful as contrast agents in magnetic resonance imaging. Of question is their performance in dual-energy computed tomography. The aims of this work are to determine (1) the relation between the computed tomography number and the concentration of the I, Gd or Ce contrast agent and (2) under what conditions it is possible to resolve the type of contrast agent. Hounsfield values of iodoacetic acid, gadolinium acetate and cerium acetate dissolved in water at molar concentrations of 10, 50 and 100 mM were measured in a water phantom using the Siemens SOMATOM Definition Force scanner; gadolinium- and cerium acetate were used as substitutes for the gadolinium-integrated cerium oxide nanoparticles. The relation between the molar concentration of the I, Gd or Ce contrast agent and the Hounsfield value was linear. Concentrations had to be sufficiently high to resolve the contrast agents.
  •  
7.
  • Sanchez, Jose Carlos Gonzalez, et al. (författare)
  • Segmentation of bones in medical dual-energy computed tomography volumes using the 3D U-Net
  • 2020
  • Ingår i: Physica medica (Testo stampato). - : Elsevier. - 1120-1797 .- 1724-191X. ; 69, s. 241-247
  • Tidskriftsartikel (refereegranskat)abstract
    • Deep learning algorithms have improved the speed and quality of segmentation for certain tasks in medical imaging. The aim of this work is to design and evaluate an algorithm capable of segmenting bones in dual-energy CT data sets. A convolutional neural network based on the 3D U-Net architecture was implemented and evaluated using high tube voltage images, mixed images and dual-energy images from 30 patients. The network performed well on all the data sets; the mean Dice coefficient for the test data was larger than 0.963. Of special interest is that it performed better on dual-energy CT volumes compared to mixed images that mimicked images taken at 120 kV. The corresponding increase in the Dice coefficient from 0.965 to 0.966 was small since the enhancements were mainly at the edges of the bones. The method can easily be extended to the segmentation of multi-energy CT data.
  •  
8.
  • Malusek, Alexandr, 1968-, et al. (författare)
  • ACCURATE KAP METER CALIBRATION AS A PREREQUISITE FOR OPTIMISATION IN PROJECTION RADIOGRAPHY
  • 2016
  • Ingår i: Radiation Protection Dosimetry. - : Oxford University Press. - 0144-8420 .- 1742-3406. ; 169:1-4, s. 353-359
  • Tidskriftsartikel (refereegranskat)abstract
    • Modern X-ray units register the air kerma–area product, PKA, with a built-in KAP meter. Some KAP meters show an energydependent bias comparable with the maximum uncertainty articulated by the IEC (25 %), adversely affecting dose-optimisation processes. To correct for the bias, a reference KAP meter calibrated at a standards laboratory and two calibration methods described here can be used to achieve an uncertainty of <7 % as recommended by IAEA. A computational model of the reference KAP meter is used to calculate beam quality correction factors for transfer of the calibration coefficient at the standards laboratory, Q0, to any beam quality, Q, in the clinic. Alternatively, beam quality corrections are measured with an energy-independent dosemeter via a reference beam quality in the clinic, Q1, to beam quality, Q. Biases up to 35 % of built-in KAP meter readings were noted. Energy-dependent calibration factors are needed for unbiased PKA. Accurate KAP meter calibration as a prerequisite for optimisation in projection radiography.
  •  
9.
  • Malusek, Alexandr, 1968- (författare)
  • Calculation of scatter in cone beam CT : Steps towards a virtual tomograph
  • 2008
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Scattered photons—shortly scatter—are generated by interaction processes when photon beams interact with matter. In diagnostic radiology, they deteriorate image quality since they add an undesirable signal that lowers the contrast in projection radiography and causes cupping and streak artefacts in computed tomography (CT). Scatter is one of the most detrimental factors in cone beam CT owing to irradiation geometries using wide beams. It cannot be fully eliminated, nevertheless its amount can be lowered via scatter reduction techniques (air gaps, antiscatter grids, collimators) and its effect on medical images can be suppressed via scatter correction algorithms.Aim: Develop a tool—a virtual tomograph—that simulates projections and performs image reconstructions similarly to a real CT scanner. Use this tool to evaluate the effect of scatter on projections and reconstructed images in cone beam CT. Propose improvements in CT scanner design and image reconstruction algorithms.Methods: A software toolkit (CTmod) based on the application development framework ROOT was written to simulate primary and scatter projections using analytic and Monte Carlo methods, respectively. It was used to calculate the amount of scatter in cone beam CT for anthropomorphic voxel phantoms and water cylinders. Configurations with and without bowtie filters, antiscatter grids, and beam hardening corrections were investigated. Filtered back-projection was used to reconstruct images. Automatic threshold segmentation of volumetric CT data of anthropomorphic phantoms with known tissue compositions was tested to evaluate its usability in an iterative image reconstruction algorithm capable of performing scatter correction.Results: It was found that computer speed was the limiting factor for the deployment of this method in clinical CT scanners. It took several hours to calculate a single projection depending on the complexity of the geometry, number of simulated detector elements, and statistical precision. Data calculated using the CTmod code confirmed the already known facts that the amount of scatter is almost linearly proportional to the beam width, the scatter-to-primary ratio (SPR) can be larger than 1 for body-size objects, and bowtie filters can decrease the SPR in certain regions of projections. Ideal antiscatter grids significantly lowered the amount of scatter. The beneficial effect of classical antiscatter grids in cone beam CT with flat panel imagers was not confirmed by other researchers nevertheless new grid designs are still being tested. A simple formula estimating the effect of scatter on the quality of reconstructed images was suggested and tested.Conclusions: It was shown that computer simulations could calculate the amount of scatter in diagnostic radiology. The Monte Carlo method was too slow for a routine use in contemporary clinical practice nevertheless it could be used to optimize CT scanner design and, with some enhancements, it could become a part of an image reconstruction algorithm that performs scatter correction.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy