SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Martinez Enguita David) "

Sökning: WFRF:(Martinez Enguita David)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Huoman, Johanna, et al. (författare)
  • Combined prenatal Lactobacillus reuteri and omega-3 supplementation synergistically modulates DNA methylation in neonatal T helper cells
  • 2021
  • Ingår i: Clinical Epigenetics. - : BMC. - 1868-7083 .- 1868-7075. ; 13:1
  • Tidskriftsartikel (refereegranskat)abstract
    • BackgroundEnvironmental exposures may alter DNA methylation patterns of T helper cells. As T helper cells are instrumental for allergy development, changes in methylation patterns may constitute a mechanism of action for allergy preventive interventions. While epigenetic effects of separate perinatal probiotic or omega -3 fatty acid supplementation have been studied previously, the combined treatment has not been assessed. We aimed to investigate epigenome-wide DNA methylation patterns from a sub-group of children in an on-going randomised double-blind placebo-controlled allergy prevention trial using pre- and postnatal combined Lactobacillus reuteri and omega -3 fatty acid treatment. To this end,>866000 CpG sites (MethylationEPIC 850K array) in cord blood CD4+ T cells were examined in samples from all four study arms (double-treatment: n=18, single treatments: probiotics n=16, omega -3 n=15, and double placebo: n=14). Statistical and bioinformatic analyses identified treatment-associated differentially methylated CpGs and genes, which were used to identify putatively treatment-induced network modules. Pathway analyses inferred biological relevance, and comparisons were made to an independent allergy data set.ResultsComparing the active treatments to the double placebo group, most differentially methylated CpGs and genes were hypermethylated, possibly suggesting induction of transcriptional inhibition. The double-treated group showed the largest number of differentially methylated CpGs, of which many were unique, suggesting synergy between interventions. Clusters within the double-treated network module consisted of immune-related pathways, including T cell receptor signalling, and antigen processing and presentation, with similar pathways revealed for the single-treatment modules. CpGs derived from differential methylation and network module analyses were enriched in an independent allergy data set, particularly in the double-treatment group, proposing treatment-induced DNA methylation changes as relevant for allergy development.ConclusionPrenatal L. reuteri and/or omega -3 fatty acid treatment results in hypermethylation and affects immune- and allergy-related pathways in neonatal T helper cells, with potentially synergistic effects between the interventions and relevance for allergic disease. Further studies need to address these findings on a transcriptional level, and whether the results associate to allergy development in the children. Understanding the role of DNA methylation in regulating effects of perinatal probiotic and omega -3 interventions may provide essential knowledge in the development of efficacious allergy preventive strategies.Trial registration ClinicalTrials.gov, ClinicalTrials.gov-ID: NCT01542970. Registered 27th of February 2012-Retrospectively registered, https://clinicaltrials.gov/ct2/show/NCT01542970.
  •  
2.
  • Tarnawski, Laura, et al. (författare)
  • Cholinergic regulation of vascular endothelial function by human ChAT + T cells
  • 2023
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 120:14
  • Tidskriftsartikel (refereegranskat)abstract
    • Endothelial dysfunction and impaired vasodilation are linked with adverse cardiovascular events. T lymphocytes expressing choline acetyltransferase (ChAT), the enzyme catalyzing biosynthesis of the vasorelaxant acetylcholine (ACh), regulate vasodilation and are integral to the cholinergic antiinflammatory pathway in an inflammatory reflex in mice. Here, we found that human T cell ChAT mRNA expression was induced by T cell activation involving the PI3K signaling cascade. Mechanistically, we identified that ChAT mRNA expression was induced following the attenuation of RE-1 Silencing Transcription factor REST-mediated methylation of the ChAT promoter, and that ChAT mRNA expression levels were up-regulated by GATA3 in human T cells. In functional experiments, T cell-derived ACh increased endothelial nitric oxide-synthase activity, promoted vasorelaxation, and reduced vascular endothelial activation and promoted barrier integrity by a cholinergic mechanism. Further, we observed that survival in a cohort of patients with severe circulatory failure correlated with their relative frequency of ChAT+CD4+ T cells in blood. These findings on ChAT+ human T cells provide a mechanism for cholinergic immune regulation of vascular endothelial function in human inflammation.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy