SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Martma T) "

Sökning: WFRF:(Martma T)

  • Resultat 1-10 av 18
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Barbaro, E., et al. (författare)
  • Free amino acids in the Arctic snow and ice core samples: Potential markers for paleoclimatic studies
  • 2017
  • Ingår i: Science of the Total Environment. - : Elsevier BV. - 0048-9697. ; 607, s. 454-462
  • Tidskriftsartikel (refereegranskat)abstract
    • The role of oceanic primary production on climate variability has long been debated. Defining changes in past oceanic primary production can help understanding of the important role that marine algae have in climate variability. In ice core research methanesulfonic acid is the chemical marker commonly used for assessing changes in past primary production. However, other organic compounds such as amino acids, can be produced and emitted into the atmosphere during a phytoplankton bloom. These species can be transported and deposited onto the ice cap in polar regions. Here we investigate the correlation between the concentration of chlorophyll-a, marker of marine primary production, and amino acids present in an ice core. For the first time, free L- and D-amino acids in Arctic snow and firn samples were determined by a sensitive and selective analytical method based on liquid chromatography coupled with tandem mass spectrometry. The new method for the determination of free amino acids concentrations was applied to firn core samples collected on April 2015 from the summit of the Holtedahlfonna glacier, Svalbard (N 79'08.424, E 13'23.639, 1120 m a.s.l.). The main results of this work are summarized as follows: (1) glycine, alanine and proline, were detected and quantified in the firn core samples; (2) their concentration profiles, compared with that of the stable isotope delta O-18 ratio, show a seasonal cycling with the highest concentrations during the spring and summer time; (3) back-trajectories and Greenland Sea chlorophyll-a concentrations obtained by satellite measurements were compared with the amino acids profile obtained from ice core samples, this provided further insights into the present results. This study suggests that the amino acid concentrations in the ice samples collected from the Holtedahlfonna glaciers could reflect changes in oceanic phytoplankton abundance.
  •  
2.
  • Barbaro, E., et al. (författare)
  • Measurement report: Spatial variations in ionic chemistry and water-stable isotopes in the snowpack on glaciers across Svalbard during the 2015-2016 snow accumulation season
  • 2021
  • Ingår i: Atmospheric Chemistry and Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 21:4, s. 3163-3180
  • Tidskriftsartikel (refereegranskat)abstract
    • The Svalbard archipelago, located at the Arctic sea-ice edge between 74 and 81 degrees N, is similar to 60% covered by glaciers. The region experiences rapid variations in atmospheric flow during the snow season (from late September to May) and can be affected by air advected from both lower and higher latitudes, which likely impact the chemical composition of snowfall. While long-term changes in Svalbard snow chemistry have been documented in ice cores drilled from two high-elevation glaciers, the spatial variability of the snowpack composition across Svalbard is comparatively poorly understood. Here, we report the results of the most comprehensive seasonal snow chemistry survey to date, carried out in April 2016 across 22 sites on seven glaciers across the archipelago. At each glacier, three snowpits were sam- pled along the altitudinal profiles and the collected samples were analysed for major ions (Ca2+, K+, Na+, Mg2+, NH4+, SO42, Br-, Cl-, and NO3-) and stable water isotopes ( ffi18O, delta H-2). The main aims were to investigate the natural and anthropogenic processes influencing the snowpack and to better understand the influence of atmospheric aerosol transport and deposition patterns on the snow chemical composition. The snow deposited in the southern region of Svalbard is characterized by the highest total ionic loads, mainly attributed to sea-salt particles. Both NO3 and NH4+ in the seasonal snowpack reflect secondary aerosol formation and post-depositional changes, resulting in very different spatial deposition patterns: NO3 has its highest loading in northwestern Spitsbergen and NH4+ in the south-west. The Br enrichment in snow is highest in north-eastern glacier sites closest to areas of extensive sea-ice coverage. Spatial correlation patterns between Na+ and delta O-18 suggest that the influence of long-range transport of aerosols on snow chemistry is proportionally greater above 600-700ma.s.l.
  •  
3.
  • Crémière, A., et al. (författare)
  • Fluid source and methane-related diagenetic processes recorded in cold seep carbonates from the Alvheim channel, central North Sea
  • 2016
  • Ingår i: Chemical Geology. - : Elsevier BV. - 0009-2541 .- 1872-6836. ; 432, s. 16-33
  • Tidskriftsartikel (refereegranskat)abstract
    • Integrated petrography, mineralogy, geochronology and geochemistry of cold seep carbonate crusts and free gas from the Alvheim channel elucidate diagenetic carbonate precipitation and related seepage histories in the central North Sea. Free gas isotope characteristics coupled with carbonate δ13C values as low as − 66‰ VPDB, indicate a predominantly microbial methane source with minor thermogenic contribution. We estimate that ~ 70% of the carbon sequestered into carbonate precipitates was derived from local oxidation of methane. The early stage of crust growth is represented by microcrystalline aragonite and Mg-calcite (10 to 40% mol MgCO3) cementing seafloor sediments consisting of clays, quartz, feldspar, and minor detrital low Mg-calcite and dolomite. Typical association of aragonite cement with coarse-grained detritus may reflect elevated fluid flow and flushing of fine particles prior to cementation close to the seafloor. Middle rare earth element enrichment in early generation microcrystalline cements containing framboidal pyrite indicates diagenetic precipitation within the zone of anaerobic methane oxidation contiguous to iron reduction. The later generation diagenetic phase corresponds to less abundant radial fibrous and botryoidal aragonite which lines cavities developed within the crusts. In contrast to early generation cements, late generation cavity infills have rare earth elements and Y patterns with small negative Ce anomalies similar to seawater, consistent with carbonate precipitation in a more open, seawater dominated system. Aragonite U–Th ages indicate carbonate precipitation between 6.09 and 3.46 kyr BP in the northern part of the channel, whereas in the southern part precipitation occurred between 1.94 and 0.81 kyr BP reflecting regional changes in fluid conduit position.
  •  
4.
  •  
5.
  • Pohjola, V, et al. (författare)
  • Effect of periodic melting on geochemical and isotopic signals in an ice core from Lomonosovfonna, Svalbard
  • 2002
  • Ingår i: J.Geophys.Res.. ; 107:D4, s. ACL 1-14
  • Tidskriftsartikel (refereegranskat)abstract
    • In this work we examine the quality of the atmospherically deposited signals in an ice core taken from a periodically melting ice field, Lomonosovfonna on central Spitsbergen, Svalbard. The aim is to investigate how much the atmospheric deposited signals in the stratigraphy of ice pack are changed by periodic melting of the ice. To determine the impact of this melting on the stratigraphy found in the ice core, we use three diagnostics: 1) Association between peak values in the ice chemical and isotopic record and ice facies type; 2) Number of “annual” cycles in these records compared with independently-determined number of years represented in the ice core; 3) Statistical comparison between the isotopic record in the ice core and the isotope records from coastal stations from the same region. We find that during warm summers as much as 50% of the annual accumulation may melt and percolate into the firn, and in a median year this decreases to ca. 25 %. As a consequence of percolation the most mobile acids show upto 50 % higher concentrations in bubble poor ice facies compared with facies that are less affected by melt. Most of the other chemical species are less affected than the strong acids, and the stable water isotopes show little evidence of mobility Annual, or bi-annual cycles are detected in most parameters, and the water isotope record has a comparable statistical distribution to isotopic records from coastal stations. We conclude that ice cores from sites like Lomonosovfonna preserve an useful environmental record despite melt events and percolation, where most parameters displays an annual, or in poor cases a bi-annual atmospheric signal.
  •  
6.
  • Zdanowicz, Christian, 1966-, et al. (författare)
  • Elemental and water-insoluble organic carbon in Svalbard snow: a synthesis of observations during 2007-2018
  • 2021
  • Ingår i: Atmospheric Chemistry and Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 21:4, s. 3035-3057
  • Tidskriftsartikel (refereegranskat)abstract
    • Light-absorbing carbonaceous aerosols emitted by biomass or fossil fuel combustion can contribute to amplifying Arctic climate warming by lowering the albedo of snow. The Svalbard archipelago, being near to Europe and Russia, is particularly affected by these pollutants, and improved knowledge of their distribution in snow is needed to assess their impact. Here we present and synthesize new data obtained on Svalbard between 2007 and 2018, comprising measurements of elemental (EC) and water-insoluble organic carbon (WIOC) in snow from 37 separate sites. We used these data, combined with meteorological data and snowpack modeling, to investigate the variability of EC and WIOC deposition in Svalbard snow across latitude, longitude, elevation and time. Overall, EC concentrations (C-snow(EC)) ranged from < 1.0 to 266.6 ng g(-1), while WIOC concentrations (C-snow(WIOC)) ranged from < 1 to 9426 ng g(-1), with the highest values observed near Ny-Alesund. Calculated snowpack loadings (L-snow(EC), L-snow(WIOC)) on glaciers surveyed in spring 2016 were 0.1 to 2.6 mg m(-2) and 2 to 173 mg m(-2), respectively. The median C-snow(EC) and the L-snow(EC) on those glaciers were close to or lower than those found in earlier (2007- 2009), comparable surveys. Both L-snow(EC) and L(snow)(WIOC )increased with elevation and snow accumulation, with dry deposition likely playing a minor role. Estimated area-averaged snowpack loads across Svalbard were 1.1 mg EC m(-2) and 38.3 mg WIOC m(-2) for the 2015-2016 winter. An similar to 11-year long dataset of spring surface snow measurements from the central BrOgger Peninsula was used to quantify the interannual variability of EC and WIOC deposition in snow. In most years, C-snow(EC) and C-snow(WIOC) at Ny-Alesund (50 m a.s.l.) were 2-5 times higher than on the nearby Austre Brogger-breen glacier (456 m a.s.l.), and the median EC/WIOC in Ny-Alesund was 6 times higher, suggesting a possible influence of local EC emission from Ny-Alesund. While no long-term trends between 2011 and 2018 were found, C-snow(EC) and C-snow(WIOC) showed synchronous variations at Ny-Alesund and Austre Broggerbreen. When compared with data from other circum-Arctic sites obtained by comparable methods, the median C(snow)(EC)on Svalbard falls between that found in central Greenland (lowest) and those in continental sectors of European Arctic (northern Scandinavia, Russia and Siberia; highest), which is consistent with large-scale patterns of BC in snow reported by surveys based on other methods.
  •  
7.
  •  
8.
  • Campeau, Audrey, et al. (författare)
  • Controls on the 14C Content of Dissolved and Particulate Organic Carbon Mobilized Across the Mackenzie River Basin, Canada
  • 2020
  • Ingår i: Global Biogeochemical Cycles. - : AMER GEOPHYSICAL UNION. - 0886-6236 .- 1944-9224. ; 34:12
  • Tidskriftsartikel (refereegranskat)abstract
    • The Mackenzie River Basin (MRB) delivers large quantities of organic carbon (OC) into the Arctic Ocean, with significant implications for the global C budgets and ocean biogeochemistry. The amount and properties of OC in the Mackenzie River's delta have been well monitored in the last decade, but the spatial variability in OC sources transported by its different tributaries is still unclear. Here we present new data on the radiocarbon (14C) content of dissolved and particulate OC (Δ14C‐DOC and Δ14C‐POC) across the mainstem and major tributaries of the MRB, comprising 19 different locations, to identify factors controlling spatial patterns in riverine OC sources. The Δ14C‐DOC and Δ14C‐POC varied across a large range, from −179.9‰ to 62.9‰, and −728.8‰ to −9.0‰, respectively. Our data reveal a positive spatial coupling between the Δ14C of DOC and POC across the MRB, whereby the most 14C‐depleted waters were issued from the mountainous west bank of the MRB. This 14C‐depleted DOC and POC likely originates from a combination of petrogenic sources, connected with the presence of kerogens in the bedrock, and biogenic sources, mobilized by thawing permafrost. Our analysis also reveals intriguing relationships between Δ14C of DOC and POC with turbidity, water stable isotope ratio and catchment elevation, indicating that hydrology and geomorphology are key to understanding riverine OC sources in this landscape. A closer examination of the specific mechanisms giving rise to these relationships is recommended. For now, this study provides a road map of the key OC sources in this rapidly changing river basin.
  •  
9.
  • Divine, D. V., et al. (författare)
  • Deuterium excess record from a small Arctic ice cap
  • 2008
  • Ingår i: Journal of Geophysical Research. - 0148-0227 .- 2156-2202. ; 113:D19, s. D19104-
  • Tidskriftsartikel (refereegranskat)abstract
    • In this paper we present a deuterium excess (d) record from an ice core drilled on a small ice cap in Svalbard in 1997. The core site is located at Lomonosovfonna at 1255 m asl, and the analyzed time series spans the period 1400-1990 A. D. The record shows pronounced multidecadal to centennial-scale variations coherent with sea surface temperature changes registered in the subtropical to southern middle-latitude North Atlantic during the instrumental period. We interpret the negative trend in the deuterium excess during the 1400s and 1500s as an indication of cooling in the North Atlantic associated with the onset of the Little Ice Age. Consistently positive anomalies of d after 1900, peaking at about 1950, correspond with well-documented contemporary warming. Yet the maximum values of deuterium excess during 1900-1990 are not as high as in the early part of the record (pre-1550). This suggests that the sea surface temperatures during this earlier period of time in the North Atlantic to the south of approximately 45 degrees N were at least comparable with those registered in the 20th century before the end of the 1980s. We examine the potential for a cold bias to exist in the deuterium excess record due to increased evaporation from the local colder sources of moisture having isotopically cold signature. It is argued that despite a recent oceanic warming, the contribution from this local moisture to the Lomonosovfonna precipitation budget is still insufficient to interfere with the isotopic signal from the primary moisture region in the midlatitude North Atlantic.
  •  
10.
  • Divine, D. V., et al. (författare)
  • Modelling the regional climate and isotopic composition of Svalbard precipitation using REMOiso : a comparison with available GNIP and ice core data
  • 2011
  • Ingår i: Hydrological Processes. - : Wiley. - 0885-6087 .- 1099-1085. ; 25:24, s. 3748-3759
  • Tidskriftsartikel (refereegranskat)abstract
    • Simulations of a regional (approx. 50 km resolution) circulation model REMOiso with embedded stable water isotope module covering the period 1958-2001 are compared with the two instrumental climate and four isotope series (d18O) from western Svalbard. We examine the data from ice cores drilled on Svalbard ice caps in 1997 (Lomonosovfonna, 1250 m asl) and 2005 (Holtedahlfonna, 1150 m asl) and the GNIP series from Ny-angstrom lesund and Isfjord Radio. The surface air temperature (SAT) and precipitation data from Longyearbyen and Ny-angstrom lesund are used to assess the skill of the model in reproducing the local climate. The model successfully captures the climate variations on the daily to multidecadal times scales although it tends to systematically underestimate the winter SAT. Analysis suggests that REMOiso performs better at simulating isotope compositions of precipitation in the winter than summer. The simulated and measured Holtedahlfonna d18O series agree reasonably well, whereas no significant correlation has been observed between the modelled and measured Lomonosovfonna ice core isotopic series. It is shown that sporadic nature as well as variability in the amount inherent in precipitation process potentially limits the accuracy of the past SAT reconstruction from the ice core data. This effect in the study area is, however, diminished by the role of other factors controlling d18O in precipitation, most likely sea ice extent, which is directly related with the SAT anomalies.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 18

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy