SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Meigs A.G.) "

Search: WFRF:(Meigs A.G.)

  • Result 1-10 of 38
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Murari, A., et al. (author)
  • A control oriented strategy of disruption prediction to avoid the configuration collapse of tokamak reactors
  • 2024
  • In: Nature Communications. - 2041-1723 .- 2041-1723. ; 15:1
  • Journal article (peer-reviewed)abstract
    • The objective of thermonuclear fusion consists of producing electricity from the coalescence of light nuclei in high temperature plasmas. The most promising route to fusion envisages the confinement of such plasmas with magnetic fields, whose most studied configuration is the tokamak. Disruptions are catastrophic collapses affecting all tokamak devices and one of the main potential showstoppers on the route to a commercial reactor. In this work we report how, deploying innovative analysis methods on thousands of JET experiments covering the isotopic compositions from hydrogen to full tritium and including the major D-T campaign, the nature of the various forms of collapse is investigated in all phases of the discharges. An original approach to proximity detection has been developed, which allows determining both the probability of and the time interval remaining before an incoming disruption, with adaptive, from scratch, real time compatible techniques. The results indicate that physics based prediction and control tools can be developed, to deploy realistic strategies of disruption avoidance and prevention, meeting the requirements of the next generation of devices.
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  • Bombarda, F., et al. (author)
  • Runaway electron beam control
  • 2019
  • In: Plasma Physics and Controlled Fusion. - : IOP Publishing. - 1361-6587 .- 0741-3335. ; 61:1
  • Journal article (peer-reviewed)
  •  
6.
  •  
7.
  •  
8.
  • Brezinsek, S., et al. (author)
  • Erosion, screening, and migration of tungsten in the JET divertor
  • 2019
  • In: Nuclear Fusion. - : IOP PUBLISHING LTD. - 0029-5515 .- 1741-4326. ; 59:9
  • Journal article (peer-reviewed)abstract
    • The erosion of tungsten (W), induced by the bombardment of plasma and impurity particles, determines the lifetime of plasma-facing components as well as impacting on plasma performance by the influx of W into the confined region. The screening of W by the divertor and the transport of W in the plasma determines largely the W content in the plasma core, but the W source strength itself has a vital impact on this process. The JET tokamak experiment provides access to a large set of W erosion-determining parameters and permits a detailed description of the W source in the divertor closest to the ITER one: (i) effective sputtering yields and fluxes as function of impact energy of intrinsic (Be, C) and extrinsic (Ne, N) impurities as well as hydrogenic isotopes (H, D) are determined and predictions for the tritium (T) isotope are made. This includes the quantification of intra- and inter-edge localised mode (ELM) contributions to the total W source in H-mode plasmas which vary owing to the complex flux compositions and energy distributions in the corresponding phases. The sputtering threshold behaviour and the spectroscopic composition analysis provides an insight in the dominating species and plasma phases causing W erosion. (ii) The interplay between the net and gross W erosion source is discussed considering (prompt) re-deposition, thus, the immediate return of W ions back to the surface due to their large Larmor radius, and surface roughness, thus, the difference between smooth bulk-W and rough W-coating components used in the JET divertor. Both effects impact on the balance equation of local W erosion and deposition. (iii) Post-mortem analysis reveals the net erosion/deposition pattern and the W migration paths over long periods of plasma operation identifying the net W transport to remote areas. This W transport is related to the divertor plasma regime, e.g. attached operation with high impact energies of impinging particles or detached operation, as well as to the applied magnetic configuration in the divertor, e.g. close divertor with good geometrical screening of W or open divertor configuration with poor screening. JET equipped with the ITER-like wall (ILW) provided unique access to the net W erosion rate within a series of 151 subsequent H-mode discharges (magnetic field: B-t = 2.0 T, plasma current: I-p = 2.0 MA, auxiliary power P-aux = 12 MW) in one magnetic configuration accumulating 900 s of plasma with particle fluences in the range of 5-6 x 10(26) D(+ )m(-2) in the semi-detached inner and attached outer divertor leg. The comparison of W spectroscopy in the intra-ELM and inter-ELM phases with post-mortem analysis of W marker tiles provides a set of gross and net W erosion values at the outer target plate. ERO code simulations are applied to both divertor leg conditions and reproduce the erosion/deposition pattern as well as confirm the high experimentally observed prompt W re-deposition factors of more than 95% in the intra- and inter-ELM phase of the unseeded deuterium H-mode plasma. Conclusions to the expected divertor conditions in ITER as well as to the JET operation in the DT plasma mixture are drawn on basis of this unique benchmark experiment.
  •  
9.
  • Brezinsek, S., et al. (author)
  • Residual carbon content in the initial ITER-Like Wall experiments at JET
  • 2013
  • In: Journal of Nuclear Materials. - : Elsevier BV. - 0022-3115 .- 1873-4820. ; 438:Suppl., s. S303-S308
  • Journal article (peer-reviewed)abstract
    • The residual carbon content and carbon edge flux in JET have been assessed by three independent diagnostic techniques after start of plasma operation with the ITER-Like Wall (ILW) with beryllium first wall and tungsten divertor: (i) in-situ measurements with optical spectroscopy on low ionisation stages of carbon, (ii) charge-exchange recombination spectroscopy, and (iii) residual gas composition analysis in dedicated global gas balance experiments. Direct comparison experiments in L-mode discharges were carried out between references from the previously installed material configuration with plasma-facing components made of carbon-fibre composite (JET-CFC) and the JET-ILW. The temporal evolution of the C divertor flux since installation of the ILW has been studied in the ohmic phase of dedicated monitoring discharges which have been executed regularly throughout the experimental exploitation so far (60000 plasma seconds). The C flux behaviour in the divertor can be divided in three phases: initial fast drop, moderate reduction phase, and a long lasting phase with almost constant C flux. The Be flux in both divertor legs mirrors the behaviour of C. All experiments and diagnostic techniques demonstrate a strong reduction in C fluxes and C content of more than one order of magnitude with respect to JET-CFC which is in line with the reduction in long-term fuel retention due to co-deposition. There is no evidence of an increase in residual carbon in time, thus no indication that a damage of the thin tungsten coatings on CFC substrate in the divertor occurred.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 38

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view