SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Meyer Veltrup Linda) "

Sökning: WFRF:(Meyer Veltrup Linda)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Brischke, Christian, et al. (författare)
  • Enhancing knowledge transfer in the wood protection sector
  • 2018
  • Ingår i: Proceedings IRG Annual Meeting 2018. - : The International Research Group on Wood Protection.
  • Konferensbidrag (refereegranskat)abstract
    • In order to meet the needs for the developing bio-based economy, maintaining and expanding the market potential for wood raw materials and wood products in indoor and outdoor construction uses remains a key activity for industries in the biotechnological and forestry sector respectively. A major restraint in this respect is the drastically deviating views and expectations on quality and performance of the material. Such differences can be found between producers and consumers, between architects and engineers, between planners and approval bodies as well as between academia on the one hand and industry and traders on the other hand. The wood protection and wood preservation sector is located exactly within this area of deviating opinions. To overcome the barriers due to different perceptions and therewith strengthen the standing of wood as a desirable building material in the future, new strategies and methods for communication, knowledge transfer and education are needed. Networking and scientific exchange between different disciplines is needed, such as forest science, silviculture, applied forestry, material sciences, wood technology, building technology, architecture and engineering. Consumer demands and preferences, which might serve as limit states to develop service life prediction and performance models, need to consider aesthetical aspects as well as the functionality of timber building assemblies. Finally, teaching students, craftsmen, and salesmen is the key to enhance the acceptance of renewable and carbon-storing products, which are both biodegradable and highly variable in their properties. All these peculiarities require a deeper understanding of their nature and characteristics to improve their purpose-related usage.
  •  
3.
  •  
4.
  • Meyer-Veltrup, Linda, et al. (författare)
  • Design and performance prediction of timber bridges based on a factorization approach
  • 2018
  • Ingår i: Wood Material Science and Engineering. - : Informa UK Limited. - 1748-0272 .- 1748-0280.
  • Tidskriftsartikel (refereegranskat)abstract
    • Service life of timber bridges is predominantly affected by the site-specific climatic conditions in terms of moisture and temperature over time, the overall design, the design of details, and the choice of materials. In recent years, a performance-based methodology has been developed to predict (1) the material climatic conditions within timber components from macro climate data and comparison between design details, (2) decay intensity from material climate data, and (3) the material resistance as a combined effect of wood-inherent properties and its moisture dynamics. Within the WoodWisdomNet project ‘Durable Timber Bridges’ we emphasized on utilizing exposure, decay, and resistance models for a comprehensive guideline for the design of timber bridges. Therefore, a factorization approach is presented based on dose–response relationship between wood material climate and responding fungal decay. The concept does also allow for quantifying the material resistance of untreated, modified, and preservative-treated wood using factors based on laboratory and field durability tests and short-term tests for capillary water uptake, adsorption, and desorption dynamics. The findings from the present study have the potential to serve as an instrument for design and service life prediction of timber structures and will be implemented in an engineering design guideline for timber bridges.
  •  
5.
  • Meyer-Veltrup, Linda, et al. (författare)
  • The combined effect of wetting ability and durability on outdoor performance of wood : development and verification of a new prediction approach
  • 2017
  • Ingår i: Wood Science and Technology. - : Springer Verlag. - 0043-7719 .- 1432-5225. ; 51:3, s. 615-637
  • Tidskriftsartikel (refereegranskat)abstract
    • Comprehensive approaches to predict performance of wood products are requested by international standards, and the first attempts have been made in the frame of European research projects. However, there is still an imminent need for a methodology to implement the durability and moisture performance of wood in an engineering design method and performance classification system. The aim of this study was therefore to establish an approach to predict service life of wood above ground taking into account the combined effect of wetting ability and durability data. A comprehensive data set was obtained from laboratory durability tests and still ongoing field trials in Norway, Germany and Sweden. In addition, four different wetting ability tests were performed with the same material. Based on a dose–response concept, decay rates for specimens exposed above ground were predicted implementing various indicating factors. A model was developed and optimised taking into account the resistance of wood against soft, white and brown rot as well as relevant types of water uptake and release. Decay rates from above-ground field tests at different test sites in Norway were predicted with the model. In a second step, the model was validated using data from laboratory and field tests performed in Germany and Sweden. The model was found to be fairly reliable, and it has the advantage to get implemented into existing engineering design guidelines. The approach at hand might furthermore be used for implementing wetting ability data into performance classification as requested by European standardisation bodies.
  •  
6.
  •  
7.
  • Ugovšek, Aleš, et al. (författare)
  • Short-term performance of wooden windows and facade elements made of thermally modified and non-modified Norway spruce in different natural environments
  • 2018
  • Ingår i: Wood Material Science & Engineering. - : Taylor & Francis. - 1748-0272 .- 1748-0280. ; 14:1, s. 42-47
  • Tidskriftsartikel (refereegranskat)abstract
    • Thermally modified wood is becoming an increasingly popular material for different applications in buildings. Laboratory tests indicated a positive effect of thermal modification on durability, dimensional stability and thermal conductivity of wood. Therefore, windows and facade elements made of thermally modified Norway spruce and non-modified Norway spruce were tested in the field and installed in different test objects which were exposed at five locations in Europe (Slovenia, Germany, Sweden, and Spain). Results from monitoring showed that elements and windows made of thermally modified spruce (TMS) had considerably lower wood moisture content compared to the ones made of non-modified spruce and that wax further positively influenced moisture performance. Colour changes of TMS were more intensive compared to non-modified spruce but were successfully retarded by adding pigments to the wax. Mould and stain growth was largely dependent on the location, amount of precipitation and relative humidity.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy