SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Miro Moran A) "

Sökning: WFRF:(Miro Moran A)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Macias Garcia, B, et al. (författare)
  • Toxicity of glycerol for the stallion spermatozoa: Effects on membrane integrity and cytoskeleton, lipid peroxidation and mitochondrial membrane potential
  • 2012
  • Ingår i: Theriogenology. - : Elsevier. - 0093-691X .- 1879-3231. ; 77:7, s. 1280-1289
  • Tidskriftsartikel (refereegranskat)abstract
    • Glycerol is, to date, the most widely used cryoprotectant to freeze stallion spermatozoa at concentrations between 2% and 5%. Cryoprotectant toxicity has been claimed to be the single most limiting factor for the success of cryopreservation. In order to evaluate the toxic effects of the concentrations of glycerol used in practice, stallion spermatozoa were incubated in Biggers Whitten and Whittingham (BWW) media supplemented with 0%, 0.5%, 1.5%, 2.5%, 3.5%, and 5% glycerol. In two additional experiments, a hyposmotic (75 mOsm/kg) and a hyperosmotic (900 mOsm/kg) control media were included. Sperm parameters evaluated included cell volume, membrane integrity, lipid peroxidation, caspase 3, 7, and 8 activation, mitochondrial membrane potential, and integrity of the cytoskeleton. Glycerol exerted toxicity at concentrations 3.5% and the maximal toxicity was observed at 5%. The actin cytoskeleton was especially sensitive to glycerol presence, inducing rapid F actin depolymerization at concentrations over 1.5%. The sperm membrane and the mitochondria were other structures affected. The toxicity of glycerol is apparently related to osmotic and nonosmotic effects. In view of our results the concentration of glycerol in the freezing media for stallion spermatozoa should not surpass 2.5%.
  •  
2.
  • Macías García, Beatriz, et al. (författare)
  • The mitochondria of stallion spermatozoa are more sensitive than the plasmalemma to osmotic induced stress: role of c-Jun N-terminal Kinase (JNKs) pathway
  • 2012
  • Ingår i: Journal of Andrology. - Schaumburg, IL, United States : American Society of Andrology. - 0196-3635 .- 1939-4640. ; 33:1, s. 105-113
  • Tidskriftsartikel (refereegranskat)abstract
    • Cryopreservation introduces extreme temperature and osmolality changes that impart lethal and sublethal effects on spermatozoa. Additionally, there is evidence that the osmotic stress induced by cryopreservation causes oxidative stress to spermatozoa. The main sources of reactive oxygen species in mammalian sperm are the mitochondria. In view of this, the aim of our study was to test whether or not osmotic stress was able to induce mitochondrial damage and to explore the osmotic tolerance of the mitochondria of stallion spermatozoa. Ejaculates from 7 stallions were subjected to osmolalities ranging from 75 to 1500 mOsm/kg, and the effect on sperm membrane integrity and mitochondrial membrane potential was studied. Additionally, the effects of changes in osmolality from hyposmotic to isosmotic and from hyperosmotic to isosmotic solutions were studied (osmotic excursions). The cellular volume of stallion spermatozoa under isosmotic conditions was 20.4 ± 0.33 μm3. When exposed to low osmolality, the stallion spermatozoa behaved like a linear osmometer, whereas exposure to high osmolalities up to 900 mOsm/kg resulted in decreased sperm volume. Although sperm membranes were relatively resistant to changes in osmolality, mitochondrial membrane potential decreased when osmolalities were low or very high (10.7 ± 1.74 and 16.5 ± 1.70 at 75 and 150 mOsm/kg, respectively, and 13.1 ± 1.83 at 1500 mOsm/kg), whereas in isosmolar controls the percentage of stallion sperm mitochondria with a high membrane potential was 41.1 ± 1.69 (P < .01). Osmotic excursions induced greater damage than exposure of spermatozoa to a given nonphysiologic osmolality, and again the mitochondria were more prone to damage induced by osmotic excursions than was the sperm plasma membrane. In search of intracellular components that could mediate these changes, we have detected for the first time the c-Jun N-terminal kinase 1/2 in stallion spermatozoa, which are apparently involved in the regulation of the viability of these cells.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy