SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Munier Raymond) "

Sökning: WFRF:(Munier Raymond)

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ask, Maria, et al. (författare)
  • Geomorphology of intraplate postglacial faults in Sweden
  • 2015
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • Melting of the Weichselian ice sheet at ≈10 000 BP is inferred to have induced large to great intraplate earthquakes in northern Fennoscandia. Over a dozen large so-called postglacial faults (PGF) have been found, mainly using aerial photogrammetry, trenching, and recognition of numerous paleolandslides in the vicinity of the faults (e.g. Lagerbäck & Sundh 2008). Recent LiDAR-based mapping led to the extension of known PGFs, the discovery of new segments of existing PGFs, and a number of new suspected PGFs (Smith et al. 2014; Mikko et al. 2015). The PGFs in Fennoscandia occur within 14-25°E and 61-69°N; the majority are within Swedish territory. PGFs generally are prominent features, up to 155 km in length and 30 m maximum surface offset. The most intense microseismic activity in Sweden occurs near PGFs. The seismogenic zone of the longest known PGF (Pärvie fault zone, PFZ) extends to ≈40 km depth. From fault geometry and earthquake scaling relations, the paleomagnitude of PFZ is estimated to 8.0±0.3 (Lindblom et al. 2015). The new high-resolution LiDAR-derived elevation model of Sweden offers an unprecedented opportunity to constrain the surface geometry of the PGFs. The objective is to reach more detailed knowledge of the surface offset across their scarps. This distribution provides a one-dimensional view of the slip distribution during the inferred paleorupture. The second objective is to analyze the pattern of vertical displacement of the hanging wall, to obtain a two-dimensional view of the displaced area that is linked to the fault geometry at depth. The anticipated results will further constrain the paleomagnitude of PGFs and will be incorporated into future modeling efforts to investigate the nature of PGFs.
  •  
2.
  • Fälth, Billy, et al. (författare)
  • Simulating earthquake rupture and off-fault fracture response : Application to the safety assessment of the Swedish nuclear waste repository
  • 2015
  • Ingår i: Bulletin of The Seismological Society of America (BSSA). - : Seismological Society of America (SSA). - 0037-1106 .- 1943-3573. ; 105:1, s. 134-151
  • Tidskriftsartikel (refereegranskat)abstract
    • To assess the long‐term safety of a deep repository of spent nuclear fuel, upper bound estimates of seismically induced secondary fracture shear displacements are needed. For this purpose, we analyze a model including an earthquake fault, which is surrounded by a number of smaller discontinuities representing fractures on which secondary displacements may be induced. Initial stresses are applied and a rupture is initiated at a predefined hypocenter and propagated at a specified rupture speed. During rupture we monitor shear displacements taking place on the nearby fracture planes in response to static as well as dynamic effects. As a numerical tool, we use the 3Dimensional Distinct Element Code (3DEC) because it has the capability to handle numerous discontinuities with different orientations and at different locations simultaneously. In tests performed to benchmark the capability of our method to generate and propagate seismic waves, 3DEC generates results in good agreement with results from both Stokes solution and the Compsyn code package. In a preliminary application of our method to the nuclear waste repository site at Forsmark, southern Sweden, we assume end‐glacial stress conditions and rupture on a shallow, gently dipping, highly prestressed fault with low residual strength. The rupture generates nearly complete stress drop and an Mw 5.6 event on the 12  km2 rupture area. Of the 1584 secondary fractures (150 m radius), with a wide range of orientations and locations relative to the fault, a majority move less than 5 mm. The maximum shear displacement is some tens of millimeters at 200 m fault‐fracture distance.
  •  
3.
  • Libby, Simon, et al. (författare)
  • Exploring the impact of fracture interaction on connectivity and flow channelling using grown fracture networks
  • 2024
  • Ingår i: Quarterly journal of engineering geology and hydrogeology. - : Geological Society of London. - 1470-9236 .- 2041-4803. ; 57:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Quantitative assessment of the flow properties and mechanical stability of naturally fractured rock is frequently practised across the mining, petroleum, geothermal, geological disposal, construction and environmental remediation industries. These fluid and mechanical behaviours are strongly influenced by the connectivity of the fracture system and the size of the intact rock blocks. However, these are amongst the more difficult fracture system properties to characterize and honour in numerical simulations. Nonetheless, they are still the product of interactions between fractures that can be conceptualized as a series of deformation events following geomechanical principles. Generating numerical models of fracture networks by simulating this deformation with a coupled and evolving rock mass and stress field is a significant undertaking. Instead, large-scale fracture network models can be 'grown' dynamically according to rules that mimic the underlying mechanical processes and deformation history. This paper explores a computationally efficient rules-based method to generate fracture networks, demonstrates how different types of fracture patterns can be simulated, and illustrates how inclusion of fracture interactions can affect flow and mechanical properties. Relative to methods without fracture interaction and in contrast to some other rules-based approaches, the method described here regularizes and increases fracture connectivity and decreases flow channelling.
  •  
4.
  • Malehmir, Alireza, et al. (författare)
  • Post-glacial reactivation of the Bollnas fault, central Sweden : a multidisciplinary geophysical investigation
  • 2016
  • Ingår i: Solid Earth. - : Copernicus GmbH. - 1869-9510 .- 1869-9529. ; 7:2, s. 509-527
  • Tidskriftsartikel (refereegranskat)abstract
    • Glacially induced intraplate faults are conspicuous in Fennoscandia where they reach trace lengths of up to 155 km with estimated magnitudes up to 8 for the associated earthquakes. While they are typically found in northern parts of Fennoscandia, there are a number of published accounts claiming their existence further south and even in northern central Europe. This study focuses on a prominent scarp discovered recently in lidar (light detection and ranging) imagery hypothesized to be from a post-glacial fault and located about 250 km north of Stockholm near the town of Bollnas. The Bollnas scarp strikes approximately north-south for about 12 km. The maximum vertical offset in the sediments across the scarp is 4-5m with the western block being elevated relative to the eastern block. To investigate potential displacement in the bedrock and identify structures in it that are related to the scarp, we conducted a multidisciplinary geophysical investigation that included gravity and magnetic measurements, high-resolution seismics, radio-magnetotellurics (RMT), electrical resistivity tomography (ERT) and ground-penetrating radar (GPR). Results of the investigations suggest a zone of low-velocity and high-conductivity in the bedrock associated with a magnetic lineament that is offset horizontally about 50m to the west of the scarp. The top of the bedrock is found similar to 10m below the surface on the eastern side of the scarp and about similar to 20m below on its western side. This difference is due to the different thicknesses of the overlying sediments accounting for the surface topography, while the bedrock surface is likely to be more or less at the same topographic level on both sides of the scarp; else the difference is not resolvable by the methods used. To explain the difference in the sediment covers, we suggest that the Bollnas scarp is associated with an earlier deformation zone, within a wide (> 150 m), highly fractured, water-bearing zone that became active as a reverse fault after the latest Weichselian deglaciation.
  •  
5.
  • Mikko, Henrik, et al. (författare)
  • LiDAR-derived inventory of post-glacial fault scarps in Sweden
  • 2015
  • Ingår i: GFF. - : Informa UK Limited. - 1103-5897 .- 2000-0863. ; 137:4, s. 334-338
  • Tidskriftsartikel (refereegranskat)abstract
    • Pre-existing bedrock structures that reactivated following deglaciation through a combination of tectonic and isostatic stresses are well documented in northern Fennoscandia. Due to their possible implications for seismic hazards, there is a need to document the locations and geometries of these features. The recent availability of a high-resolution, LiDAR-derived, digital elevation model coveringmost of Sweden provides an ideal base upon which to map post-glacial fault scarps that appear to crosscut glacial sediments and landforms. The current mapping project has identified new post-glacial fault scarps in central Sweden, and both refined and rejected scarps previously mapped by aerial photographicinterpretation in northern Sweden. No post-glacial fault scarps, however, were identified in southern Sweden. The current inventory of post-glacial fault scarps is available for download and will be updated as more data become available.
  •  
6.
  • Moon, Seulgi, et al. (författare)
  • Present-Day Stress Field Influences Bedrock Fracture Openness Deep Into the Subsurface
  • 2020
  • Ingår i: Geophysical Research Letters. - : American Geophysical Union (AGU). - 0094-8276 .- 1944-8007. ; 47:23
  • Tidskriftsartikel (refereegranskat)abstract
    • Fracturing of bedrock promotes water-rock interactions and influences the formation of the life-sustaining layer of soil at Earth's surface. Models predict that present-day stress fields should influence bedrock fracture openness, but testing this prediction has proven difficult because comprehensive fracture data sets are rarely available. We model the three-dimensional present-day stress field beneath the deglaciated, low-relief landscape of Forsmark, Sweden. We account for ambient regional stresses, pore pressure, topography, sediment weight, and seawater loading. We then compare the modeled stresses to a data set of similar to 50,000 fractures reaching depths of 600 m at Forsmark. We show that modeled failure proxies correlate strongly with the fraction of observed open fractures to depths of similar to 500 m. This result implies that the present-day regional stress field, affected by surface conditions and pore pressure, influences fracture openness in bedrock hundreds of meters beneath the surface, thereby preparing the rock for further weathering. Plain Language Summary The "critical zone"-the life-sustaining part of the Earth that extends from the top of the tree canopy to the bottom of permeable bedrock-is essential for ecosystems and agriculture. The opening of bedrock fractures and onset of water-rock interaction are crucial to the formation of the critical zone. Within the bedrock, the intensities of horizontal regional forces and vertical gravitational forces typically increase with depth. These force intensities, or stresses, are modified by surface effects associated with topography, the weight of overlying seawater and sediment, and by groundwater pressure. However, the influence of these surface effects on fractures has been difficult to observe because comprehensive fracture data sets are rare. In this study, we examine whether, and to what depths, bedrock may fracture under the influence of stress associated with surficial conditions. We compare bedrock stress calculations with similar to 50,000 fractures from 18 cores reaching depths of 600 m at Forsmark, Sweden. We find that the present-day stress field influences the opening of fractures to depths of 500 m, contributing to the formation of the critical zone and the preparation of rock for weathering hundreds of meters beneath the surface, much deeper than previously thought.
  •  
7.
  •  
8.
  • Stigsson, Martin, et al. (författare)
  • Orientation uncertainty goes bananas : An algorithm to visualise the uncertainty sample space on stereonets for oriented objects measured in boreholes
  • 2013
  • Ingår i: Computers & Geosciences. - : Elsevier BV. - 0098-3004 .- 1873-7803. ; 56, s. 56-61
  • Tidskriftsartikel (refereegranskat)abstract
    • Measurements of structure orientations are afflicted with uncertainties which arise from many sources. Commonly, such uncertainties involve instrument imprecision, external disturbances and human factors. The aggregated uncertainty depends on the uncertainty of each of the sources. The orientation of an object measured in a borehole (e.g. a fracture) is calculated using four parameters: the bearing and inclination of the borehole and two relative angles of the measured object to the borehole. Each parameter may be a result of one or several measurements. The aim of this paper is to develop a method to both calculate and visualize the aggregated uncertainty resulting from the uncertainty in each of the four geometrical constituents. Numerical methods were used to develop a VBA-application in Microsoft Excel to calculate the aggregated uncertainty. The code calculates two different representations of the aggregated uncertainty: a 1-parameter uncertainty, the ‘minimum dihedral angle’, denoted by Ω; and, a non-parametric visual representation of the uncertainty, denoted by χ. The simple 1-parameter uncertainty algorithm calculates the minimum dihedral angle accurately, but overestimates the probability space that plots as an ellipsoid on a lower hemisphere stereonet. The non-parametric representation plots the uncertainty probability space accurately, usually as a sector of an annulus for steeply inclined boreholes, but is difficult to express numerically. The 1-parameter uncertainty can be used for evaluating statistics of large datasets whilst the non-parametric representation is useful when scrutinizing single or a few objects.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy