SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Nawroth Peter) "

Search: WFRF:(Nawroth Peter)

  • Result 1-3 of 3
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Shahzad, Khurrum, et al. (author)
  • Nlrp3-inflammasome activation in non-myeloid-derived cells aggravates diabetic nephropathy
  • 2015
  • In: Kidney International. - : Nature Publishing Group: Open Access Hybrid Model Option A. - 0085-2538 .- 1523-1755. ; 87:1, s. 74-84
  • Journal article (peer-reviewed)abstract
    • Diabetic nephropathy is a growing health concern with characteristic sterile inflammation. As the underlying mechanisms of this inflammation remain poorly defined, specific therapies targeting sterile inflammation in diabetic nephropathy are lacking. Intriguingly, an association of diabetic nephropathy with inflammasome activation has recently been shown, but the pathophysiological relevance of this finding remains unknown. Within glomeruli, inflammasome activation was detected in endothelial cells and podocytes in diabetic humans and mice and in glucose-stressed glomerular endothelial cells and podocytes in vitro. Abolishing Nlrp3 or caspase-1 expression in bone marrow-derived cells fails to protect mice against diabetic nephropathy. Conversely, Nlrp3-deficient mice are protected against diabetic nephropathy despite transplantation of wild-type bone marrow. Pharmacological IL-1R antagonism prevented or even reversed diabetic nephropathy in mice. Mitochondrial reactive oxygen species (ROS) activate the Nlrp3 inflammasome in glucose or advanced glycation end product stressed podocytes. Inhibition of mitochondrial ROS prevents glomerular inflammasome activation and nephropathy in diabetic mice. Thus, mitochondrial ROS and Nlrp3-inflammasome activation in non-myeloid-derived cells aggravate diabetic nephropathy. Targeting the inflammasome may be a potential therapeutic approach to diabetic nephropathy.
  •  
2.
  • Ejdesjö, Andreas, 1978-, et al. (author)
  • Receptor for Advanced Glycation End products (RAGE) knockout reduces fetal dysmorphogenesis in murine diabetic pregnancy
  • 2016
  • In: Reproductive Toxicology. - : Elsevier BV. - 0890-6238 .- 1873-1708. ; 62, s. 62-70
  • Journal article (other academic/artistic)abstract
    • Background & Aim: The receptor for Advanced Glycation End products (RAGE) is implicated in the pathogenesis of diabetic complications, but its importance for the induction of congenital malformations in diabetic pregnancy is unclear. The aim of the present study was to investigate a possible role of RAGE activation in the induction of diabetic embryopathy.Methods: Female non-diabetic and diabetic wildtype (WT) C57Bl/6 mice and RAGE knockout C57Bl/6 (RAGE‑/-) mice were mated with males of the same genotype. Diabetes was induced by daily streptozotocin (STZ) injections (50 mg/kg STZ i.p.) on five consecutive days. On gestational day 18, pregnant mice were anesthetized and blood was drawn from the heart to measure maternal metabolic parameters. Fetuses and placentas were excised, weighed, and examined for morphological anomalies, and fetal livers were analyzed for 8‑iso‑PGF2α levels.Results: There were no malformations in non-diabetic WT or non-diabetic RAGE‑/- mice. However, resorption rates were higher in non-diabetic WT (10%) than in non-diabetic RAGE‑/- mice (4%). Diabetic WT mice had higher malformation (22%) and resorption (43%) rates than diabetic RAGE‑/- mice (3% malformations and 21% resorptions). Maternal diabetes decreased fetal weight more in WT fetuses (44%) than in RAGE‑/- fetuses (36%). There were no differences in plasma glucose levels between the diabetic WT and RAGE‑/- mice, but plasma levels of triglycerides and cholesterol were lower in diabetic WT mice than in diabetic RAGE-/- mice. Diabetes increased maternal plasma levels of methylglyoxal in WT and RAGE‑/- mice, and increased fetal hepatic levels of 8-iso-PGF2α in WT fetuses, but not in RAGE‑/- fetuses. Discussion: Knockout of RAGE diminished the rates of fetal malformations and resorptions, despite similar levels of hyperglycemia in pregnant diabetic mice. An anti-teratogenic effect was present in RAGE‑/- mice despite having a more severe diabetic state than diabetic WT mice. As 8-iso-PGF2α, a marker of oxidative stress, only increased in diabetic WT offspring, this suggested a pivotal role of RAGE activation and oxidative stress in the pathogenesis of diabetic embryopathy.
  •  
3.
  • Zaharia, Oana P., et al. (author)
  • Risk of diabetes-associated diseases in subgroups of patients with recent-onset diabetes : a 5-year follow-up study
  • 2019
  • In: The Lancet Diabetes and Endocrinology. - 2213-8587. ; 7:9, s. 684-694
  • Journal article (peer-reviewed)abstract
    • Background: Cluster analyses have proposed different diabetes phenotypes using age, BMI, glycaemia, homoeostasis model estimates, and islet autoantibodies. We tested whether comprehensive phenotyping validates and further characterises these clusters at diagnosis and whether relevant diabetes-related complications differ among these clusters, during 5-years of follow-up. Methods: Patients with newly diagnosed type 1 or type 2 diabetes in the German Diabetes Study underwent comprehensive phenotyping and assessment of laboratory variables. Insulin sensitivity was assessed using hyperinsulinaemic-euglycaemic clamps, hepatocellular lipid content using magnetic resonance spectroscopy, hepatic fibrosis using non-invasive scores, and peripheral and autonomic neuropathy using functional and clinical criteria. Patients were reassessed after 5 years. The German Diabetes Study is registered with ClinicalTrials.gov, number NCT01055093, and is ongoing. Findings: 1105 patients were classified at baseline into five clusters, with 386 (35%) assigned to mild age-related diabetes (MARD), 323 (29%) to mild obesity-related diabetes (MOD), 247 (22%) to severe autoimmune diabetes (SAID), 121 (11%) to severe insulin-resistant diabetes (SIRD), and 28 (3%) to severe insulin-deficient diabetes (SIDD). At 5-year follow-up, 367 patients were reassessed, 128 (35%) with MARD, 106 (29%) with MOD, 88 (24%) with SAID, 35 (10%) with SIRD, and ten (3%) with SIDD. Whole-body insulin sensitivity was lowest in patients with SIRD at baseline (mean 4·3 mg/kg per min [SD 2·0]) compared with those with SAID (8·4 mg/kg per min [3·2]; p<0·0001), MARD (7·5 mg/kg per min [2·5]; p<0·0001), MOD (6·6 mg/kg per min [2·6]; p=0·0011), and SIDD (5·5 mg/kg per min [2·4]; p=0·0035). The fasting adipose-tissue insulin resistance index at baseline was highest in patients with SIRD (median 15·6 [IQR 9·3–20·9]) and MOD (11·6 [7·4–17·9]) compared with those with MARD (6·0 [3·9–10·3]; both p<0·0001) and SAID (6·0 [3·0–9·5]; both p<0·0001). In patients with newly diagnosed diabetes, hepatocellular lipid content was highest at baseline in patients assigned to the SIRD cluster (median 19% [IQR 11–22]) compared with all other clusters (7% [2–15] for MOD, p=0·00052; 5% [2–11] for MARD, p<0·0001; 2% [0–13] for SIDD, p=0·0083; and 1% [0–3] for SAID, p<0·0001), even after adjustments for baseline medication. Accordingly, hepatic fibrosis at 5-year follow-up was more prevalent in patients with SIRD (n=7 [26%]) than in patients with SAID (n=5 [7%], p=0·0011), MARD (n=12 [12%], p=0·012), MOD (n=13 [15%], p=0·050), and SIDD (n=0 [0%], p value not available). Confirmed diabetic sensorimotor polyneuropathy was more prevalent at baseline in patients with SIDD (n=9 [36%]) compared with patients with SAID (n=10 [5%], p<0·0001), MARD (n=39 [15%], p=0·00066), MOD (n=26 [11%], p<0·0001), and SIRD (n=10 [17%], p<0·0001). Interpretation: Cluster analysis can characterise cohorts with different degrees of whole-body and adipose-tissue insulin resistance. Specific diabetes clusters show different prevalence of diabetes complications at early stages of non-alcoholic fatty liver disease and diabetic neuropathy. These findings could help improve targeted prevention and treatment and enable precision medicine for diabetes and its comorbidities. Funding: German Diabetes Center, German Federal Ministry of Health, Ministry of Culture and Science of the state of North Rhine-Westphalia, German Federal Ministry of Education and Research, German Diabetes Association, German Center for Diabetes Research, Research Network SFB 1116 of the German Research Foundation, and Schmutzler Stiftung.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-3 of 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view