SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Nayak Omnarayani) "

Search: WFRF:(Nayak Omnarayani)

  • Result 1-3 of 3
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Gasman, Danny, et al. (author)
  • JWST MIRI/MRS in-flight absolute flux calibration and tailored fringe correction for unresolved sources
  • 2023
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 673
  • Journal article (peer-reviewed)abstract
    • Context. The Medium Resolution Spectrometer (MRS) is one of the four observing modes of JWST/MIRI. Using JWST in-flight data of unresolved (point) sources, we can derive the MRS absolute spectral response function (ASRF) starting from raw data. Spectral fringing, caused by coherent reflections inside the detector arrays, plays a critical role in the derivation and interpretation of the MRS ASRF. The fringe corrections implemented in the current pipeline are not optimal for non-extended sources, and a high density of molecular features particularly inhibits an accurate correction. Aims. In this paper, we present an alternative way to calibrate the MIRI/MRS data. Firstly, we derive a fringe correction that accounts for the dependence of the fringe properties on the MIRI/MRS pupil illumination and detector pixel sampling of the point spread function. Secondly, we derive the MRS ASRF using an absolute flux calibrator observed across the full 5- 28 µm wavelength range of the MRS. Thirdly, we apply the new ASRF to the spectrum of a G dwarf and compare it with the output of the JWST/MIRI default data reduction pipeline. Finally, we examine the impact of the different fringe corrections on the detectability of molecular features in the G dwarf and K giant. Methods. The absolute flux calibrator HD 163466 (A-star) was used to derive tailored point source fringe flats at each of the default dither locations of the MRS. The fringe-corrected point source integrated spectrum of HD 163466 was used to derive the MRS ASRF using a theoretical model for the stellar continuum. A cross-correlation was run to quantify the uncertainty on the detection of CO, SiO, and OH in the K giant and CO in the G dwarf for different fringe corrections. Results. The point-source-tailored fringe correction and ASRF are found to perform at the same level as the current corrections, beating down the fringe contrast to the sub-percent level in the G dwarf in the longer wavelengths, whilst mitigating the alteration of real molecular features. The same tailored solutions can be applied to other MRS unresolved targets. Target acquisition is required to ensure the pointing is accurate enough to apply this method. A pointing repeatability issue in the MRS limits the effectiveness of the tailored fringe flats is at short wavelengths. Finally, resulting spectra require no scaling to make the sub-bands match, and a dichroic spectral leak at 12.2 µm is removed.
  •  
2.
  • Hirschauer, Alec S., et al. (author)
  • Imaging of I Zw 18 by JWST. I. Detecting Dusty Stellar Populations
  • 2024
  • In: Astronomical Journal. - 1538-3881 .- 0004-6256. ; 168:1
  • Journal article (peer-reviewed)abstract
    • We present a JWST imaging survey of I Zw 18, the archetypal extremely metal-poor, star-forming (SF), blue compact dwarf galaxy. With an oxygen abundance of only similar to 3% Z circle dot, it is among the lowest-metallicity systems known in the local Universe, and is, therefore, an excellent accessible analog for the galactic building blocks which existed at early epochs of ionization and star formation. These JWST data provide a comprehensive infrared (IR) view of I Zw 18 with eight filters utilizing both Near Infrared Camera (F115W, F200W, F356W, and F444W) and Mid-Infrared Instrument (F770W, F1000W, F1500W, and F1800W) photometry, which we have used to identify key stellar populations that are bright in the near- and mid-IR. These data allow for a better understanding of the origins of dust and dust-production mechanisms in metal-poor environments by characterizing the population of massive, evolved stars in the red supergiant (RSG) and asymptotic giant branch (AGB) phases. In addition, it enables the identification of the brightest dust-enshrouded young stellar objects (YSOs), which provide insight into the formation of massive stars at extremely low metallicities typical of the very early Universe. This paper provides an overview of the observational strategy and data processing, and presents first science results, including identifications of dusty AGB, RSG, and bright YSO candidates. These first results assess the scientific quality of JWST data and provide a guide for obtaining and interpreting future observations of the dusty and evolved stars inhabiting compact dwarf SF galaxies in the local Universe.
  •  
3.
  • Wright, Gillian, et al. (author)
  • The Mid-infrared Instrument for JWST and Its In-flight Performance
  • 2023
  • In: Publications of the Astronomical Society of the Pacific. - 0004-6280 .- 1538-3873. ; 135:1046
  • Journal article (peer-reviewed)abstract
    • The Mid-Infrared Instrument (MIRI) extends the reach of the James Webb Space Telescope (JWST) to 28.5 μm. It provides subarcsecond-resolution imaging, high sensitivity coronagraphy, and spectroscopy at resolutions of λ/Δλ ∼ 100-3500, with the high-resolution mode employing an integral field unit to provide spatial data cubes. The resulting broad suite of capabilities will enable huge advances in studies over this wavelength range. This overview describes the history of acquiring this capability for JWST. It discusses the basic attributes of the instrument optics, the detector arrays, and the cryocooler that keeps everything at approximately 7 K. It gives a short description of the data pipeline and of the instrument performance demonstrated during JWST commissioning. The bottom line is that the telescope and MIRI are both operating to the standards set by pre-launch predictions, and all of the MIRI capabilities are operating at, or even a bit better than, the level that had been expected. The paper is also designed to act as a roadmap to more detailed papers on different aspects of MIRI.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-3 of 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view