SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(O'Donoghue C) "

Sökning: WFRF:(O'Donoghue C)

  • Resultat 1-10 av 36
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • 2017
  • swepub:Mat__t
  •  
2.
  •  
3.
  • Lumbers, R. T., et al. (författare)
  • The genomics of heart failure: design and rationale of the HERMES consortium
  • 2021
  • Ingår i: Esc Heart Failure. - : Wiley. - 2055-5822. ; 8:6, s. 5531-5541
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims The HERMES (HEart failure Molecular Epidemiology for Therapeutic targets) consortium aims to identify the genomic and molecular basis of heart failure. Methods and results The consortium currently includes 51 studies from 11 countries, including 68 157 heart failure cases and 949 888 controls, with data on heart failure events and prognosis. All studies collected biological samples and performed genome-wide genotyping of common genetic variants. The enrolment of subjects into participating studies ranged from 1948 to the present day, and the median follow-up following heart failure diagnosis ranged from 2 to 116 months. Forty-nine of 51 individual studies enrolled participants of both sexes; in these studies, participants with heart failure were predominantly male (34-90%). The mean age at diagnosis or ascertainment across all studies ranged from 54 to 84 years. Based on the aggregate sample, we estimated 80% power to genetic variant associations with risk of heart failure with an odds ratio of >1.10 for common variants (allele frequency > 0.05) and >1.20 for low-frequency variants (allele frequency 0.01-0.05) at P < 5 x 10(-8) under an additive genetic model. Conclusions HERMES is a global collaboration aiming to (i) identify the genetic determinants of heart failure; (ii) generate insights into the causal pathways leading to heart failure and enable genetic approaches to target prioritization; and (iii) develop genomic tools for disease stratification and risk prediction.
  •  
4.
  • Shah, S, et al. (författare)
  • Genome-wide association and Mendelian randomisation analysis provide insights into the pathogenesis of heart failure
  • 2020
  • Ingår i: Nature communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 11:1, s. 163-
  • Tidskriftsartikel (refereegranskat)abstract
    • Heart failure (HF) is a leading cause of morbidity and mortality worldwide. A small proportion of HF cases are attributable to monogenic cardiomyopathies and existing genome-wide association studies (GWAS) have yielded only limited insights, leaving the observed heritability of HF largely unexplained. We report results from a GWAS meta-analysis of HF comprising 47,309 cases and 930,014 controls. Twelve independent variants at 11 genomic loci are associated with HF, all of which demonstrate one or more associations with coronary artery disease (CAD), atrial fibrillation, or reduced left ventricular function, suggesting shared genetic aetiology. Functional analysis of non-CAD-associated loci implicate genes involved in cardiac development (MYOZ1, SYNPO2L), protein homoeostasis (BAG3), and cellular senescence (CDKN1A). Mendelian randomisation analysis supports causal roles for several HF risk factors, and demonstrates CAD-independent effects for atrial fibrillation, body mass index, and hypertension. These findings extend our knowledge of the pathways underlying HF and may inform new therapeutic strategies.
  •  
5.
  • Winkler, TW, et al. (författare)
  • Differential and shared genetic effects on kidney function between diabetic and non-diabetic individuals
  • 2022
  • Ingår i: Communications biology. - : Springer Science and Business Media LLC. - 2399-3642. ; 5:1, s. 580-
  • Tidskriftsartikel (refereegranskat)abstract
    • Reduced glomerular filtration rate (GFR) can progress to kidney failure. Risk factors include genetics and diabetes mellitus (DM), but little is known about their interaction. We conducted genome-wide association meta-analyses for estimated GFR based on serum creatinine (eGFR), separately for individuals with or without DM (nDM = 178,691, nnoDM = 1,296,113). Our genome-wide searches identified (i) seven eGFR loci with significant DM/noDM-difference, (ii) four additional novel loci with suggestive difference and (iii) 28 further novel loci (including CUBN) by allowing for potential difference. GWAS on eGFR among DM individuals identified 2 known and 27 potentially responsible loci for diabetic kidney disease. Gene prioritization highlighted 18 genes that may inform reno-protective drug development. We highlight the existence of DM-only and noDM-only effects, which can inform about the target group, if respective genes are advanced as drug targets. Largely shared effects suggest that most drug interventions to alter eGFR should be effective in DM and noDM.
  •  
6.
  •  
7.
  • Iacopetta, B, et al. (författare)
  • Functional categories of TP53 mutation in colorectal cancer: results of an International Collaborative Study.
  • 2006
  • Ingår i: Annals of oncology : official journal of the European Society for Medical Oncology / ESMO. - : Elsevier BV. - 0923-7534. ; 17:5, s. 842-7
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Loss of TP53 function through gene mutation is a critical event in the development and progression of many tumour types including colorectal cancer (CRC). In vitro studies have found considerable heterogeneity amongst different TP53 mutants in terms of their transactivating abilities. The aim of this work was to evaluate whether TP53 mutations classified as functionally inactive (< or=20% of wildtype transactivation ability) had different prognostic and predictive values in CRC compared with mutations that retained significant activity. MATERIALS AND METHODS: TP53 mutations within a large, international database of CRC (n = 3583) were classified according to functional status for transactivation. RESULTS: Inactive TP53 mutations were found in 29% of all CRCs and were more frequent in rectal (32%) than proximal colon (22%) tumours (P < 0.001). Higher frequencies of inactive TP53 mutations were also seen in advanced stage tumours (P = 0.0003) and in tumours with the poor prognostic features of vascular (P = 0.006) and lymphatic invasion (P = 0.002). Inactive TP53 mutations were associated with significantly worse outcome only in patients with Dukes' stage D tumours (RR = 1.71, 95%CI 1.25-2.33, P < 0.001). Patients with Dukes' C stage tumours appeared to gain a survival benefit from 5-fluorouracil-based chemotherapy regardless of TP53 functional status for transactivation ability. CONCLUSIONS: Mutations that inactivate the transactivational ability of TP53 are more frequent in advanced CRC and are associated with worse prognosis in this stage of disease.
  •  
8.
  • Turcot, Valerie, et al. (författare)
  • Protein-altering variants associated with body mass index implicate pathways that control energy intake and expenditure in obesity
  • 2018
  • Ingår i: Nature Genetics. - : Nature Publishing Group. - 1061-4036 .- 1546-1718. ; 50:1, s. 26-41
  • Tidskriftsartikel (refereegranskat)abstract
    • Genome-wide association studies (GWAS) have identified >250 loci for body mass index (BMI), implicating pathways related to neuronal biology. Most GWAS loci represent clusters of common, noncoding variants from which pinpointing causal genes remains challenging. Here we combined data from 718,734 individuals to discover rare and low-frequency (minor allele frequency (MAF) < 5%) coding variants associated with BMI. We identified 14 coding variants in 13 genes, of which 8 variants were in genes (ZBTB7B, ACHE, RAPGEF3, RAB21, ZFHX3, ENTPD6, ZFR2 and ZNF169) newly implicated in human obesity, 2 variants were in genes (MC4R and KSR2) previously observed to be mutated in extreme obesity and 2 variants were in GIPR. The effect sizes of rare variants are similar to 10 times larger than those of common variants, with the largest effect observed in carriers of an MC4R mutation introducing a stop codon (p.Tyr35Ter, MAF = 0.01%), who weighed similar to 7 kg more than non-carriers. Pathway analyses based on the variants associated with BMI confirm enrichment of neuronal genes and provide new evidence for adipocyte and energy expenditure biology, widening the potential of genetically supported therapeutic targets in obesity.
  •  
9.
  •  
10.
  • Tajuddin, Salman M., et al. (författare)
  • Large-Scale Exome-wide Association Analysis Identifies Loci for White Blood Cell Traits and Pleiotropy with Immune-Mediated Diseases
  • 2016
  • Ingår i: American Journal of Human Genetics. - : Elsevier BV. - 0002-9297 .- 1537-6605. ; 99:1, s. 22-39
  • Tidskriftsartikel (refereegranskat)abstract
    • White blood cells play diverse roles in innate and adaptive immunity. Genetic association analyses of phenotypic variation in circulating white blood cell (WBC) counts from large samples of otherwise healthy individuals can provide insights into genes and biologic pathways involved in production, differentiation, or clearance of particular WBC lineages (myeloid, lymphoid) and also potentially inform the genetic basis of autoimmune, allergic, and blood diseases. We performed an exome array-based meta-analysis of total WBC and subtype counts (neutrophils, monocytes, lymphocytes, basophils, and eosinophils) in a multi-ancestry discovery and replication sample of similar to 157,622 individuals from 25 studies. We identified 16 common variants (8 of which were coding variants) associated with one or more WBC traits, the majority of which are pleiotropically associated with autoimmune diseases. Based on functional annotation, these loci included genes encoding surface markers of myeloid, lymphoid, or hematopoietic stem cell differentiation (CD69, CD33, CD87), transcription factors regulating lineage specification during hematopoiesis (ASXL1, IRF8, IKZF1, JMJD1C, ETS2-PSMG1), and molecules involved in neutrophil clearance/apoptosis (C10orf54, LTA), adhesion (TNXB), or centrosome and microtubule structure/function (KIF9, TUBD1). Together with recent reports of somatic ASXL1 mutations among individuals with idiopathic cytopenias or clonal hematopoiesis of undetermined significance, the identification of a common regulatory 3 ' UTR variant of ASXL1 suggests that both germline and somatic ASXL1 mutations contribute to lower blood counts in otherwise asymptomatic individuals. These association results shed light on genetic mechanisms that regulate circulating WBC counts and suggest a prominent shared genetic architecture with inflammatory and autoimmune diseases.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 36
Typ av publikation
tidskriftsartikel (32)
konferensbidrag (2)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (31)
övrigt vetenskapligt/konstnärligt (4)
Författare/redaktör
Wallentin, Lars, 194 ... (8)
Rotter, Jerome I. (7)
Nikus, Kjell (7)
Loos, Ruth J F (7)
Lange, Leslie A. (7)
Boerwinkle, Eric (7)
visa fler...
Waterworth, Dawn M. (7)
Ärnlöv, Johan, 1970- (6)
Lind, Lars (6)
Raitakari, Olli T (6)
Melander, Olle (6)
White, Harvey D. (6)
Lehtimaki, Terho (6)
Psaty, Bruce M (6)
Wilson, James G. (6)
Orho-Melander, Marju (5)
O'Donoghue, D (5)
Mononen, Nina (5)
Harris, Tamara B (5)
Hayward, Caroline (5)
Gudnason, Vilmundur (5)
Giedraitis, Vilmanta ... (5)
Edwards, Todd L (5)
Teumer, Alexander (5)
Ghasemi, S (4)
Mahajan, A. (4)
Li, Jin (4)
Teumer, A (4)
Auer, Paul L. (4)
Almgren, Peter (4)
Ikram, M. Arfan (4)
Chu, Audrey Y (4)
Ghanbari, M. (4)
Strauch, Konstantin (4)
Lind, L (4)
Thorsteinsdottir, U (4)
Stefansson, K (4)
Holm, H (4)
Metspalu, Andres (4)
Deary, Ian J (4)
van der Harst, P (4)
Koenig, Wolfgang (4)
Fornage, Myriam (4)
Manichaikul, Ani (4)
Liu, Yongmei (4)
Elliott, Paul (4)
Heid, Iris M (4)
Esko, Tõnu (4)
Franke, Andre (4)
Feitosa, Mary F. (4)
visa färre...
Lärosäte
Uppsala universitet (19)
Karolinska Institutet (19)
Lunds universitet (9)
Högskolan Dalarna (6)
Göteborgs universitet (4)
Linköpings universitet (3)
visa fler...
Umeå universitet (1)
Stockholms universitet (1)
visa färre...
Språk
Engelska (36)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (18)
Naturvetenskap (5)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy