SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Quiroz Simon) "

Sökning: WFRF:(Quiroz Simon)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Alkarsifi, Riva, et al. (författare)
  • Organic-inorganic doped nickel oxide nanocrystals for hole transport layers in inverted polymer solar cells with color tuning
  • 2021
  • Ingår i: Materials Chemistry Frontiers. - : ROYAL SOC CHEMISTRY. - 2052-1537. ; 5:1, s. 418-429
  • Tidskriftsartikel (refereegranskat)abstract
    • Polymer solar cells using non-fullerene acceptors are nowadays amongst the most promising approaches for next generation photovoltaic applications. However, there are still remaining challenges related to large-scale fully solution-processing of high efficiency solar cells as high efficiencies are obtained only for very small areas using hole transport layers based on evaporated molybdenum oxide. Solution-processable hole transport materials compatible with non-fullerene acceptor materials are still scarce and thus considered as one of the major challenges nowadays. In this work, we present copper-doped nickel oxide nanocrystals that form highly stable inks in alcohol-based solutions. This allows processing of efficient hole transport layers in both regular and inverted device structures of polymer solar cells. As the initial work function of these ionic doped materials is too low for efficient hole extraction, doping the nanocrystals with an organic electron acceptor, namely 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquino dimethane (F4-TCNQ), was additionally applied to make the work function more suitable for hole extraction. The resulting hybrid hole transport layers were first studied in polymer solar cells based on fullerene acceptors using regular device structures yielding 7.4% efficiency identical to that of reference cells based on poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS). For inverted device structures, the hybrid hole transport layers were processed on top of blends based on the non-fullerene acceptor IT-4F and PBDB-T-2F donor. The corresponding solar cells showed promising efficiencies up to 7.9% while the reference devices using PEDOT:PSS showed inferior performances. We further show that the hybrid hole transport layer can be used to tune the color of the polymer solar cells using optical spacer effects.
  •  
2.
  •  
3.
  • Chen, Haiwei, et al. (författare)
  • Extending the environmental lifetime of unpackaged perovskite solar cells through interfacial design
  • 2016
  • Ingår i: Journal of Materials Chemistry A. - : Royal Society of Chemistry (RSC). - 2050-7488 .- 2050-7496. ; 4:30, s. 11604-11610
  • Tidskriftsartikel (refereegranskat)abstract
    • Solution-processed oxo-functionalized graphene (oxo-G1) is employed to substitute hydrophilic PEDOT:PSS as an anode interfacial layer for perovskite solar cells. The resulting devices exhibit a reasonably high power conversion efficiency (PCE) of 15.2% in the planar inverted architecture with oxo-G1 as a hole transporting material (HTM), and most importantly, deploy the full open-circuit voltage (Voc) of up to 1.1 V. Moreover, oxo-G1 effectively slows down the ingress of water vapor into the device stack resulting in significantly enhanced environmental stability of unpackaged cells under illumination with 80% of the initial PCE being reached after 500 h. Without encapsulation, ∼60% of the initial PCE is retained after ∼1000 h of light soaking under 0.5 sun and ambient conditions maintaining the temperature beneath 30 °C. Moreover, the unsealed perovskite device retains 92% of its initial PCE after about 1900 h under ambient conditions and in the dark. Our results underpin that controlling water diffusion into perovskite cells through advanced interface engineering is a crucial step towards prolonged environmental stability.
  •  
4.
  • Minns, Sean, et al. (författare)
  • Immersive 3D exposure-based treatment for spider fear : A randomized controlled trial
  • 2018
  • Ingår i: Journal of Anxiety Disorders. - : Elsevier. - 0887-6185 .- 1873-7897. ; 58, s. 1-7
  • Tidskriftsartikel (refereegranskat)abstract
    • Stereoscopic 3D gives the viewer the same shape, size, perspective and depth they would experience viewing the real world and could mimic the perceptual threat cues present in real life. This is the first study to investigate whether an immersive stereoscopic 3D video exposure-based treatment would be effective in reducing fear of spiders. Participants with a fear of spiders (N = 77) watched two psychoeducational videos with facts about spiders and phobias. They were then randomized to a treatment condition that watched a single session of a stereoscopic 3D immersive video exposure-based treatment (six 5-min exposures) delivered through a virtual reality headset or a psychoeducation only control condition that watched a 30-min neutral video (2D documentary) presented on a computer monitor. Assessments of spider fear (Fear of Spiders Questionnaire [FSQ], Behavioral Approach Task [BAT], & subjective ratings of fear) were completed pre- and post-treatment. Consistent with prediction, the stereoscopic 3D video condition outperformed the control condition in reducing fear of spiders showing a large between-group effect size on the FSQ (Cohen's d = 0.85) and a medium between group effect size on the BAT (Cohen's d = 0.47). This provides initial support for stereoscopic 3D video in treating phobias.
  •  
5.
  • Minns, Sean, et al. (författare)
  • Immersive 3D exposure-based treatment for spider fear : A randomized controlled trial
  • 2019
  • Ingår i: Journal of Anxiety Disorders. - : Elsevier BV. - 0887-6185 .- 1873-7897. ; 61, s. 37-44
  • Tidskriftsartikel (refereegranskat)abstract
    • Stereoscopic 3D gives the viewer the same shape, size, perspective and depth they would experience viewing the real world and could mimic the perceptual threat cues present in real life. This is the first study to investigate whether an immersive stereoscopic 3D video exposure-based treatment would be effective in reducing fear of spiders. Participants with a fear of spiders (N = 77) watched two psychoeducational videos with facts about spiders and phobias. They were then randomized to a treatment condition that watched a single session of a stereoscopic 3D immersive video exposure-based treatment (six 5-minute exposures) delivered through a virtual reality headset or a psychoeducation only control condition that watched a 30-minute neutral video (2D documentary) presented on a computer monitor. Assessments of spider fear (Fear of Spiders Questionnaire [FSQ], Behavioral Approach Task [BAT], & subjective ratings of fear) were completed pre- and post-treatment. Consistent with prediction, the stereoscopic 3D video condition outperformed the control condition in reducing fear of spiders showing a large between-group change effect size on the FSQ (Cohen's d = 0.85) and a medium between-group effect size on the BAT (Cohen's d = 0.47). This provides initial support for stereoscopic 3D video in treating phobias.
  •  
6.
  • Quiroz-García, Beatriz, et al. (författare)
  • Transformations of the natural dimeric phthalide diligustilide
  • 2004
  • Ingår i: Tetrahedron. - : Elsevier BV. - 0040-4020. ; 60:16, s. 3681-3688
  • Tidskriftsartikel (refereegranskat)abstract
    • A series of intramolecular condensation products were obtained by base-catalyzed treatment of the natural bioactive dimeric phthalide diligustilide (1) using different reaction conditions and the yields remarkably depend on these. The reaction conditions to obtain selectively the intramolecular condensation derivatives or the hydrolysis products of diligustilide (1) are described.
  •  
7.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy