SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Robroek Bjorn J. M.) "

Sökning: WFRF:(Robroek Bjorn J. M.)

  • Resultat 1-10 av 14
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Kattge, Jens, et al. (författare)
  • TRY plant trait database - enhanced coverage and open access
  • 2020
  • Ingår i: Global Change Biology. - : Wiley-Blackwell. - 1354-1013 .- 1365-2486. ; 26:1, s. 119-188
  • Tidskriftsartikel (refereegranskat)abstract
    • Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives.
  •  
2.
  • Bengtsson, Fia, 1986-, et al. (författare)
  • Environmental drivers of Sphagnum growth in peatlands across the Holarctic region
  • 2021
  • Ingår i: Journal of Ecology. - : John Wiley & Sons. - 0022-0477 .- 1365-2745. ; 109:1, s. 417-431
  • Tidskriftsartikel (refereegranskat)abstract
    • The relative importance of global versus local environmental factors for growth and thus carbon uptake of the bryophyte genusSphagnum-the main peat-former and ecosystem engineer in northern peatlands-remains unclear. We measured length growth and net primary production (NPP) of two abundantSphagnumspecies across 99 Holarctic peatlands. We tested the importance of previously proposed abiotic and biotic drivers for peatland carbon uptake (climate, N deposition, water table depth and vascular plant cover) on these two responses. Employing structural equation models (SEMs), we explored both indirect and direct effects of drivers onSphagnumgrowth. Variation in growth was large, but similar within and between peatlands. Length growth showed a stronger response to predictors than NPP. Moreover, the smaller and denserSphagnum fuscumgrowing on hummocks had weaker responses to climatic variation than the larger and looserSphagnum magellanicumgrowing in the wetter conditions. Growth decreased with increasing vascular plant cover within a site. Between sites, precipitation and temperature increased growth forS. magellanicum. The SEMs indicate that indirect effects are important. For example, vascular plant cover increased with a deeper water table, increased nitrogen deposition, precipitation and temperature. These factors also influencedSphagnumgrowth indirectly by affecting moss shoot density. Synthesis. Our results imply that in a warmer climate,S. magellanicumwill increase length growth as long as precipitation is not reduced, whileS. fuscumis more resistant to decreased precipitation, but also less able to take advantage of increased precipitation and temperature. Such species-specific sensitivity to climate may affect competitive outcomes in a changing environment, and potentially the future carbon sink function of peatlands.
  •  
3.
  • Granath, Gustaf, et al. (författare)
  • Environmental and taxonomic controls of carbon and oxygen stable isotope composition in Sphagnum across broad climatic and geographic ranges
  • 2018
  • Ingår i: Biogeosciences. - : Copernicus Publications. - 1726-4170 .- 1726-4189. ; 15:16, s. 5189-5202
  • Tidskriftsartikel (refereegranskat)abstract
    • Rain-fed peatlands are dominated by peat mosses (Sphagnum sp.), which for their growth depend on nutrients, water and CO2 uptake from the atmosphere. As the isotopic composition of carbon (C-12(,)13) and oxygen (O-16(,)18) of these Sphagnum mosses are affected by environmental conditions, Sphagnum tissue accumulated in peat constitutes a potential long-term archive that can be used for climate reconstruction. However, there is inadequate understanding of how isotope values are influenced by environmental conditions, which restricts their current use as environmental and palaeoenvironmental indicators. Here we tested (i) to what extent C and O isotopic variation in living tissue of Sphagnum is speciesspecific and associated with local hydrological gradients, climatic gradients (evapotranspiration, temperature, precipitation) and elevation; (ii) whether the C isotopic signature can be a proxy for net primary productivity (NPP) of Sphagnum; and (iii) to what extent Sphagnum tissue delta O-18 tracks the delta O-18 isotope signature of precipitation. In total, we analysed 337 samples from 93 sites across North America and Eurasia us ing two important peat-forming Sphagnum species (S. magellanicum, S. fuscum) common to the Holarctic realm. There were differences in delta C-13 values between species. For S. magellanicum delta C-13 decreased with increasing height above the water table (HWT, R-2 = 17 %) and was positively correlated to productivity (R-2 = 7 %). Together these two variables explained 46 % of the between-site variation in delta C-13 values. For S. fuscum, productivity was the only significant predictor of delta C-13 but had low explanatory power (total R-2 = 6 %). For delta O-18 values, approximately 90 % of the variation was found between sites. Globally modelled annual delta O-18 values in precipitation explained 69 % of the between-site variation in tissue delta O-18. S. magellanicum showed lower delta O-18 enrichment than S. fuscum (-0.83 %0 lower). Elevation and climatic variables were weak predictors of tissue delta O-18 values after controlling for delta O-18 values of the precipitation. To summarize, our study provides evidence for (a) good predictability of tissue delta O-18 values from modelled annual delta O-18 values in precipitation, and (b) the possibility of relating tissue delta C-13 values to HWT and NPP, but this appears to be species-dependent. These results suggest that isotope composition can be used on a large scale for climatic reconstructions but that such models should be species-specific.
  •  
4.
  • Lett, Signe, et al. (författare)
  • Can bryophyte groups increase functional resolution in tundra ecosystems?
  • 2022
  • Ingår i: Arctic Science. - Ottawa : Canadian Science Publishing. - 2368-7460. ; 8:3, s. 609-637
  • Tidskriftsartikel (refereegranskat)abstract
    • The relative contribution of bryophytes to plant diversity, primary productivity, and ecosystem functioning increases towards colder climates. Bryophytes respond to environmental changes at the species level, but because bryophyte species are relatively difficult to identify, they are often lumped into one functional group. Consequently, bryophyte function remains poorly resolved. Here, we explore how higher resolution of bryophyte functional diversity can be encouraged and implemented in tundra ecological studies. We briefly review previous bryophyte functional classifications and the roles of bryophytes in tundra ecosystems and their susceptibility to environmental change. Based on shoot morphology and colony organization, we then propose twelve easily distinguishable bryophyte functional groups. To illustrate how bryophyte functional groups can help elucidate variation in bryophyte effects and responses, we compiled existing data on water holding capacity, a key bryophyte trait. Although plant functional groups can mask potentially high interspecific and intraspecific variability, we found better separation of bryophyte functional group means compared with previous grouping systems regarding water holding capacity. This suggests that our bryophyte functional groups truly represent variation in the functional roles of bryophytes in tundra ecosystems. Lastly, we provide recommendations to improve the monitoring of bryophyte community changes in tundra study sites.
  •  
5.
  • Robroek, Bjorn J. M., et al. (författare)
  • Rewiring of peatland plant–microbe networks outpaces species turnover
  • 2021
  • Ingår i: Oikos. - : Wiley-Blackwell Publishing Inc.. - 0030-1299 .- 1600-0706. ; 130:3, s. 339-353
  • Tidskriftsartikel (refereegranskat)abstract
    • Enviro‐climatic changes are thought to be causing alterations in ecosystem processes through shifts in plant and microbial communities; however, how links between plant and microbial communities change with enviro–climatic change is likely to be less straightforward but may be fundamental for many ecological processes. To address this, we assessed the composition of the plant community and the prokaryotic community – using amplicon‐based sequencing – of three European peatlands that were distinct in enviro–climatic conditions. Bipartite networks were used to construct site‐specific plant–prokaryote co‐occurrence networks. Our data show that between sites, plant and prokaryotic communities differ and that turnover in interactions between the communities was complex. Essentially, turnover in plant–microbial interactions is much faster than turnover in the respective communities. Our findings suggest that network rewiring does largely result from novel or different interactions between species common to all realised networks. Hence, turnover in network composition is largely driven by the establishment of new interactions between a core community of plants and microorganisms that are shared among all sites. Taken together our results indicate that plant–microbe associations are context dependent, and that changes in enviro–climatic conditions will likely lead to network rewiring. Integrating turnover in plant–microbe interactions into studies that assess the impact of enviro–climatic change on peatland ecosystems is essential to understand ecosystem dynamics and must be combined with studies on the impact of these changes on ecosystem processes.
  •  
6.
  • Sytiuk, Anna, et al. (författare)
  • Predicting the structure and functions of peatland microbial communities from Sphagnum phylogeny, anatomical and morphological traits and metabolites
  • 2022
  • Ingår i: Journal of Ecology. - : John Wiley & Sons. - 0022-0477 .- 1365-2745. ; 110:1, s. 80-96
  • Tidskriftsartikel (refereegranskat)abstract
    • Sphagnum mosses are keystone species in northern peatlands. Notably, they play an important role in peatland carbon (C) cycling by regulating the composition and activity of microbial communities. However, it remains unclear whether information on Sphagnum phylogeny and/or traits-based composition (i.e. anatomical and morphological traits and metabolites) can be used to predict the structure of microbial communities and their functioning. Here we evaluated whether Sphagnum phylogeny and traits predict additional variation in peatland microbial community composition and functioning beyond what would be predicted from environmental characteristics (i.e. climatic and edaphic conditions).We collected Sphagnum and microbial data from five European peatlands distributed along a latitudinal gradient from northern Sweden to southern France. These data allowed us to assess Sphagnum anatomical and morphological traits and metabolites at different sites along changing environmental conditions. Using structural equation modelling (SEM) and phylogenetic distance analyses, we investigated the role of Sphagnum traits in shaping microbial community composition and functioning along with environmental conditions.We show that microbial community composition and traits varied independently from both Sphagnum phylogeny and the latitudinal gradient. Specifically, the addition of Sphagnum traits to climatic and edaphic variables to the SEM allowed it to explain a larger proportion of the explained variance (R2). This observation was most apparent for the biomass of decomposers (+42%) and phototrophs (+19%), as well as for growth yield microbial traits (+10%). As such, that Sphagnum metabolites were important drivers for microbial community structure and traits, while Sphagnum anatomical and morphological traits were poor predictors.Synthesis. Our results highlight that Sphagnum metabolites are more likely to influence peatland microbial food web structure and functioning than Sphagnum anatomical and morphological traits. We provide further evidence that measurements of the plant metabolome, when combined with classical functional traits, improve our understanding of how the plants interact with their associated microbiomes.
  •  
7.
  • de Fouw, Jimmy, et al. (författare)
  • A facultative mutualism facilitates European seagrass meadows
  • 2023
  • Ingår i: Ecography. - 0906-7590 .- 1600-0587. ; 2023:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Coastal ecosystem functioning often hinges on habitat-forming foundation species that engage in positive interactions (e.g. facilitation and mutualism) to reduce environmental stress. Seagrasses are important foundation species in coastal zones but are rapidly declining with losses typically linked to intensifying global change-related environmental stress. There is growing evidence that loss or disruption of positive interactions can amplify coastal ecosystem degradation as it compromises its stress mitigating capacity. Multiple recent studies highlight that seagrass can engage in a facultative mutualistic relationship with lucinid bivalves that alleviate sulphide toxicity. So far, however, the generality of this mutualism, and how its strength and relative importance depend on environmental conditions, remains to be investigated. Here we study the importance of the seagrass-lucinid mutualistic interaction on a continental-scale using a field survey across Europe. We found that the lucinid bivalve Loripes orbiculatus is associated with the seagrasses Zostera noltii and Zostera marina across a large latitudinal range. At locations where the average minimum temperature was above 1 °C, L. orbiculatus was present in 79% of the Zostera meadows; whereas, it was absent below this temperature. At locations above this minimum temperature threshold, mud content was the second most important determinant explaining the presence or absence of L. orbiculatus. Further analyses suggest that the presence of the lucinids have a positive effect on seagrass biomass by mitigating sulphide stress. Finally, results of a structural equation model (SEM) support the existence of a mutualistic feedback between L. orbiculatus and Z. noltii. We argue that this seagrass-lucinid mutualism should be more solidly integrated into management practices to improve seagrass ecosystem resilience to global change as well as the success of restoration efforts.
  •  
8.
  • Puissant, Jeremy, et al. (författare)
  • Seasonality alters drivers of soil enzyme activity in subalpine grassland soil undergoing climate change
  • 2018
  • Ingår i: Soil Biology and Biochemistry. - : Elsevier. - 0038-0717 .- 1879-3428. ; 124, s. 266-274
  • Tidskriftsartikel (refereegranskat)abstract
    • In mountain ecosystems with marked seasonality, climate change can affect various processes in soils, potentially modifying long-term key soil services via change in soil organic carbon (C) storage. Based on a four-year soil transplantation experiment in Swiss subalpine grasslands, we investigated how imposed climate warming and reduced precipitation modified the drivers of soil carbon enzyme potential activities across winter and summer seasons. Specifically, we used structural equation models (SEMs) to identify biotic (microbial community structure, abundance and activity) and abiotic (quantity and quality of organic matter resources) drivers of soil C-enzymes (hydrolase and oxidase) in two seasons under two different climate scenarios. We found contrasting impacts of the climate manipulation on the drivers of C-enzymes between winter and summer. In winter, no direct effect of climate manipulation (reduced rainfall and warming) on enzyme activity was observed. Yet, climate indirectly down-regulated enzyme activity through a decrease in the availability of water extractable organic carbon (WEOC) labile resources. During summer, reduced soil moisture induced by the climate manipulation directly reduced soil microbial biomass, which led to a decrease in C-enzyme activity. In general, across both seasons, neither microbial community structure, nor organic matter quality were strong determinants of enzymatic activity. In particular organic matter recalcitrance (aromaticity) was not found as a general driver of either hydrolase or oxidase C-enzyme potential activities, though we did observe higher C enzyme activities led to an increase of particulate organic matter recalcitrance in the summer season. Overall, our results highlight the seasonality of climate change effects on soil organic matter enzymatic decomposition, providing a comprehensive picture of seasonal potential cause and effect relationships governing C mineralization in subalpine grasslands.
  •  
9.
  • Robroek, Bjorn J. M., et al. (författare)
  • How nitrogen and sulphur addition, and a single drought event affect root phosphatase activity in Phalaris arundinacea
  • 2009
  • Ingår i: Science of the Total Environment. - : Elsevier BV. - 1879-1026 .- 0048-9697. ; 407:7, s. 2342-2348
  • Tidskriftsartikel (refereegranskat)abstract
    • Conservation and restoration of fens and fen meadows often aim to reduce soil nutrients, mainly nitrogen (N) andphosphorus (P). The biogeochemistry of P has received much attention as P-enrichment is expected to negatively impact on species diversity in wetlands. It is known that N, sulphur (S) and hydrological conditions affect the biogeochemistry of P, yet their interactive effects on P-dynamics are largely unknown. Additionally, in Europe, climate change has been predicted to lead to increases in summer drought. We performed a greenhouse experiment to elucidate the interactive effects of N, S and a single drought event on the P-availability for Phalaris arundinacea. Additionally, the response of plant phosphatase activity to these factors was measured over the two year experimental period. In contrast to results from earlier experiments, our treatments hardly affected soil P-availability. This may be explained by the higher pH in our soils, hampering the formation of Fe-P or Fe-Al complexes. Addition of S, however, decreased the plants N:P ratio, indicating an effect of S on the N:P stoichiometry and an effect on the plant's P-demand. Phosphatase activity increased significantly after addition of S, but was not affected by the addition of N or a single drought event. Root phosphatase activity was also positively related to plant tissue N and P concentrations, plant N and P uptake, and plant aboveground biomass, suggesting that the phosphatase enzyme influences P-biogeochemistry. Our results demonstrated that it is difficult to predict the effects of wetland restoration, since the involved mechanisms are not fully understood. Short-term and long-term effects on root phosphatase activity may differ considerably. Additionally, the addition of S can lead to unexpected effects on the biogeochemistry of P. Our results showed that natural resource managers should be careful when restoring degraded fens or preventing desiccation of fen ecosystems. (C) 2008 Elsevier B.V. All rights reserved.
  •  
10.
  • Sytiuk, Anna, et al. (författare)
  • Biochemical traits enhance the trait concept in Sphagnum ecology
  • 2022
  • Ingår i: Oikos. - : John Wiley & Sons. - 0030-1299 .- 1600-0706. ; :4
  • Tidskriftsartikel (refereegranskat)abstract
    • Sphagnum mosses are key to northern peatland carbon sequestration. They have a range of morphological and anatomical characteristics that allow them to cope with environmental stress. Sphagnum also produces a plethora of biochemicals that may prevent stress-induced cell-damage. However, the linkages between Sphagnum anatomical, morphological and biochemical traits (i.e. metabolites, pigments and antioxidant enzyme activities) are poorly known, neither are their joint responses to environmental change. Here, we quantify and link an array of Sphagnum anatomical, morphological and biochemical traits in five Sphagnum-dominated peatlands distributed along a latitudinal gradient in Europe, covering a range of regional and local environmental conditions. Sphagnum morphological and anatomical traits were intrinsically linked to Sphagnum metabolites and enzyme activities, and these relationships were driven by shared responses to local and regional environmental factors. More particularly, we found that Sphagnum traits can be grouped into four clusters related to growth, biomass, defense and water stress tolerance. We used regional and local environmental conditions data to further show that biochemicals and their specific linkages with some morphological traits describe dimensions of physiology not captured by anatomical and morphological traits alone. These results suggest that Sphagnum morphology and function is rooted in the metabolome, and that incorporating biochemicals into the functional trait space concept can enhance our mechanistic understanding and predictive power in Sphagnum ecology.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 14
Typ av publikation
tidskriftsartikel (14)
Typ av innehåll
refereegranskat (14)
Författare/redaktör
Robroek, Bjorn J. M. (12)
Dorrepaal, Ellen (6)
Bragazza, Luca (4)
Lamentowicz, Mariusz (4)
Tuittila, Eeva-Stiin ... (4)
Jassey, Vincent E.J. (4)
visa fler...
Gavazov, Konstantin, ... (3)
Buttler, Alexandre (3)
Mills, Robert T. E. (3)
Lindgren, Per-Eric (2)
Vellak, Kai (2)
Natali, Susan M. (2)
Galka, Mariusz (2)
Svensson, Bo (2)
Rydin, Håkan, 1953- (2)
Soudzilovskaia, Nade ... (2)
Limpens, Juul (2)
Baltzer, Jennifer L. (2)
Bu, Zhao-Jun (2)
Caporn, Simon J. M. (2)
Galanina, Olga (2)
Ganeva, Anna (2)
Goia, Irina (2)
Goncharova, Nadezhda (2)
Hajek, Michal (2)
Haraguchi, Akira (2)
Harris, Lorna I. (2)
Humphreys, Elyn (2)
Jirousek, Martin (2)
Kajukalo, Katarzyna (2)
Karofeld, Edgar (2)
Koronatova, Natalia ... (2)
Kosykh, Natalia P. (2)
Lapshina, Elena (2)
Linkosalmi, Maiju (2)
Ma, Jin-Ze (2)
Mauritz, Marguerite (2)
Munir, Tariq M. (2)
Natcheva, Rayna (2)
Payne, Richard J. (2)
Rice, Steven K. (2)
Robinson, Sean (2)
Rochefort, Line (2)
Singer, David (2)
Waddington, James Mi ... (2)
Granath, Gustaf (2)
Carbognani, Michele (2)
Petraglia, Alessandr ... (2)
Robroek, Bjorn (2)
Hamard, Samuel (2)
visa färre...
Lärosäte
Umeå universitet (8)
Uppsala universitet (3)
Linköpings universitet (3)
Stockholms universitet (2)
Sveriges Lantbruksuniversitet (2)
Göteborgs universitet (1)
visa fler...
Högskolan i Halmstad (1)
Högskolan i Gävle (1)
Lunds universitet (1)
Karlstads universitet (1)
visa färre...
Språk
Engelska (14)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (13)
Lantbruksvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy