SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Rodriguez Barrueco C) "

Sökning: WFRF:(Rodriguez Barrueco C)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  • Leps, J, et al. (författare)
  • Long-term effectiveness of sowing high and low diversity seed mixtures to enhance plant community development on ex-arable fields
  • 2007
  • Ingår i: Applied Vegetation Science. - 1402-2001. ; 10:1, s. 97-110
  • Tidskriftsartikel (refereegranskat)abstract
    • Questions: How is succession on ex-arable land affected by sowing high and low diversity mixtures of grassland species as compared to natural succession? How long do effects persist? Location: Experimental plots installed in the Czech Republic, The Netherlands, Spain, Sweden and the United Kingdom. Methods: The experiment was established on ex-arable land, with five blocks, each containing three 10 m x 10 m experiment tal plots: natural colonization, a low- (four species) and high-diversity (15 species) seed mixture. Species composition and biomass was followed for eight years. Results: The sown plants considerably affected the whole successional pathway and the effects persisted during the whole eight year period. Whilst the proportion of sown species (characterized by their cover) increased during the study period, the number of sown species started to decrease from the third season onwards. Sowing caused suppression of natural colonizing species, and the sown plots had more biomass. These effects were on average larger in the high diversity mixtures. However, the low diversity replicate sown with the mixture that produced the largest biomass or largest suppression of natural colonizers fell within the range recorded at the five replicates of the high diversity plots. The natural colonization plots usually had the highest total species richness and lowest productivity at the end of the observation period. Conclusions: The effect of sowing demonstrated dispersal limitation as a factor controlling the rate of early secondary succession. Diversity was important primarily for its 'insurance effect': the high diversity mixtures were always able to compensate for the failure of some species.
  •  
4.
  • Leps, J, et al. (författare)
  • Separating the chance effect from other diversity effects in the functioning of plant communities
  • 2001
  • Ingår i: Oikos. - : Wiley. - 1600-0706 .- 0030-1299. ; 92:1, s. 123-134
  • Tidskriftsartikel (refereegranskat)abstract
    • The effect of plant species diversity on productivity and competitive ability was studied in an experiment carried out simultaneously in five European countries: Czech Republic (CZ), the Netherlands (NL), Sweden (SE), Spain (SP), and United Kingdom (UK). The aim was to separate the 'chance' or 'sampling effect' (increasing the number of sown species increases the probability that a species able 'to do a job' will be included) from the complementarity effect (species-rich communities are better able to exploit resources and to take care of ecosystem functions than species-poor communities). In the experiment, low diversity (LD) and high diversity (HD) mixtures of grassland species were sown into fields taken out of arable cultivation. The HD mixture consisted of five grass species, five legumes and five other forbs. The LD mixtures consisted of two grasses, one legume and one other forb, with different plant species combinations in each replicate block. The design of the experiment was constructed in such a way that the total number of seeds of each species over all the replications was exactly the same in HD and LD treatments, and the total number of grass seeds, leguminous seeds and other forb seeds were the same in both LD and HD. The responses measured were the total above-ground biomass las a measure of productivity) and the average number of naturally establishing species in a plot las a measure of the competitive ability of the mixture), both measured in the third year of the experiment. The results show that, on average, the HD plots performed better (i.e., attained higher biomass, had better weed suppression), but that the best LD mixture was as good as the best HD mixture. On the contrary, the worst LD mixture was always less successful than the worst HD replicate. The performance of particular species in the HD mixtures was a good predictor of the success of a certain species combination in a LD mixture (explaining 61% of variability between particular LD mixtures). In all sites, the LD mixture composed of species which were the most abundant in HD mixtures was as efficient in suppressing weeds as the HD mixture itself. It is argued that the performance of a species assemblage is influenced mostly by the identity of species and the diversity effect is mainly due to the 'chance' or 'sampling' effect with increasing number of species the probability that an important species will be included in the mixture increases. Caution is urged in interpreting experiments with manipulated diversity and the possible limitations of such experiments are discussed.
  •  
5.
  • Van der Putten, W H, et al. (författare)
  • Plant species diversity as a driver of early succession in abandoned fields: a multi-site approach
  • 2000
  • Ingår i: Oecologia. - : Springer Science and Business Media LLC. - 1432-1939 .- 0029-8549. ; 124:1, s. 91-99
  • Tidskriftsartikel (refereegranskat)abstract
    • Succession is one of the most studied processes in ecology and succession theory provides strong predictability. However, few attempts have been made to influence the course of succession thereby testing the hypothesis that passing through one stage is essential before entering the next one. At each stage of succession ecosystem processes may be affected by the diversity of species present, but there is little empirical evidence showing that plant species diversity may affect succession. On ex-arable land, a major constraint of vegetation succession is the dominance of perennial early-successional (arable weed) species. Our aim was to change the initial vegetation succession by the direct sowing of later-successional plant species. The hypothesis was tested that a diverse plant species mixture would be more successful in weed suppression than species-poor mixtures. In order to provide a robust test including a wide range of environmental conditions and plant species, experiments were carried out at five sites across Europe. At each site, an identical experiment was set up, albeit that the plant species composition of the sown mixtures differed from site to site. Results of the 2-year study showed that diverse plant species mixtures were more effective at reducing the number of natural colonisers (mainly weeds from the seed bank) than the average low-diversity treatment. However, the effect of the low-diversity treatment depended on the composition of the species mixture. Thus, the effect of enhanced species diversity strongly depended on the species composition of the low-diversity treatments used for comparison. The effects of high-diversity plant species mixtures on weed suppression differed between sites. Low-productivity sites gave the weakest response to the diversity treatments. These differences among sites did not change the general pattern. The present results have implications for understanding biological invasions. It has been hypothesised that alien species are more likely to invade species-poor communities than communities with high diversity. However, our results show that the identity of the local species matters. This may explain, at least partly, controversial results of studies on the relation between local diversity and the probability of being invaded by aliens.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy