SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Rout Surya S.) "

Sökning: WFRF:(Rout Surya S.)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Boschi, Samuele, et al. (författare)
  • Late Eocene 3He and Ir anomalies associated with ordinary chondritic spinels
  • 2017
  • Ingår i: Geochimica et Cosmochimica Acta. - : Elsevier BV. - 0016-7037. ; 204, s. 205-218
  • Tidskriftsartikel (refereegranskat)abstract
    • During the late Eocene there was an enigmatic enhancement in the flux of extraterrestrial material to Earth. Evidence comes from sedimentary 3He records indicating an increased flux of interplanetary dust during ca. 2 Myr, as well as two very large impact structures, Popigai (100 km diameter) and Chesapeake Bay (40–85 km), that formed within 10–20 kyr at the peak of the 3He delivery. The Massignano section in Italy has one of the best sedimentary records of these events, including a well-defined 3He record, an Ir-rich ejecta bed related to the Popigai impact event, and two smaller Ir anomalies. Recently we showed that the Popigai ejecta is associated with a significant enrichment of chromite grains (>63 μm) with an H-chondritic elemental composition (17 grains in 100 kg of rock). Most likely these grains are unmelted fragments from the impactor. Slightly higher up (ca. 20 cm) in the section, where a small Ir anomaly possibly related to the Chesapeake Bay impact has been measured, we found a weak enrichment in L-chondritic grains (8 grains in 208 kg of rock). Here we report an extended data set increasing the total amount of sediment dissolved in acid and searched for extraterrestrial chromite grains from 658 to 1168 kg. In altogether 760 kg of background sediment from 17 levels over 14 m of strata outside the interval corresponding to the Popigai and Chesapeake Bay impacts, we only found 2 extraterrestrial chromite grains. Both grains have L-chondritic compositions and were found in a 100 kg sample from the ca. 10.25 m level in the section where the second of the smaller Ir anomalies has been reported. A correlation appears to exist between Ir, 3He and chromite from ordinary chondrites. We also report oxygen three-isotope measurements of the extraterrestrial chromite grains associated with the Popigai ejecta and confirm an H-chondritic composition. The new results strengthen our scenario that the upper Eocene 3He and Ir enrichments originate from the asteroid belt rather than the Oort cloud as originally proposed when the 3He anomaly was discovered. The generally low background concentrations of extraterrestrial chromite through the section speak against any major single asteroid breakup event such as in the mid-Ordovician after the break-up of the L-chondrite parent body. Instead the data reconcile with a small, possibly a factor of 2–3, increase in the flux of extraterrestrial material to Earth, but of both H- and L-chondritic composition. We also report the composition of all the 2310 terrestrial chrome spinel grains recovered, and show that their chemical composition indicates a dominantly regional ophiolitic source. Four anomalous chrome spinel grains with high Ti and V concentrations were found in the Popigai ejecta. These grains originate from Siberian Traps basalts in the Popigai crater at the time of impact.
  •  
2.
  •  
3.
  •  
4.
  • Heck, Philipp R., et al. (författare)
  • Unusual sources of fossil micrometeorites deduced from relict chromite in the small size fraction in ~467 Ma old limestone
  • Ingår i: Meteoritics and Planetary Science. - 1086-9379.
  • Tidskriftsartikel (refereegranskat)abstract
    • Extraterrestrial chrome spinel and chromite extracted from the sedimentary rock record are relicts from coarse micrometeorites and rarely meteorites. They are studied to reconstruct the paleoflux of meteorites to the Earth and the collisional history of the asteroid belt. Minor element concentrations of Ti and V, and oxygen isotopic compositions of these relict minerals were used to classify the meteorite type they stem from, and thus to determine the relative meteorite group abundances through time. While coarse sediment-dispersed extraterrestrial chrome-spinel (SEC) grains from ordinary chondrites dominate through the studied time windows in the Phanerozoic, there are exceptions: We have shown that ~467 Ma ago, 1 Ma before the breakup of the L chondrite parent body (LCPB), more than half of the largest (>63 μm diameter) grains were achondritic and originated from differentiated asteroids in contrast to ordinary chondrites which dominated the meteorite flux throughout most of the past 500 Ma. Here, we present a new data set of oxygen isotopic compositions and elemental compositions of 136 grains of a smaller size fraction (32–63 μm) in ~467 Ma old pre-LCPB limestone from the Lynna River section in western Russia, that was previously studied by elemental analysis. Our study constitutes the most comprehensive oxygen isotopic data set of sediment-dispersed extraterrestrial chrome spinel to date. We also introduce a Raman spectroscopy-based method to identify SEC grains and distinguish them from terrestrial chrome spinel with ~97% reliability. We calibrated the Raman method with the established approach using titanium and vanadium concentrations and oxygen isotopic compositions. We find that ordinary chondrites are approximately three times more abundant in the 32–63 μm fraction than achondrites. While abundances of achondrites compared to ordinary chondrites are lower in the 32–63 μm size fraction than in the >63 μm one, achondrites are approximately three times more abundant in the 32–62 μm fraction than they are in the present flux. We find that the sources of SEC grains vary for different grain sizes, mainly as a result of parent body thermal metamorphism. We conclude that the meteorite flux composition ~467 Ma ago ~1 Ma before the breakup of the LCPB was fundamentally different from today and from other time windows studied in the Phanerozoic, but that in contrast to the large size fraction ordinary chondrites dominated the flux in the small size fraction. The high abundance of ordinary chondrites in the studied samples is consistent with the findings based on coarse extraterrestrial chrome-spinel from other time windows.
  •  
5.
  • Rout, Surya S., et al. (författare)
  • Shock history of the fossil ungrouped achondrite Österplana 065 : Raman spectroscopy and TEM of relict chrome-spinel grains
  • 2018
  • Ingår i: Meteoritics and Planetary Science. - : Wiley. - 1086-9379. ; 53:5, s. 973-983
  • Tidskriftsartikel (refereegranskat)abstract
    • Chrome-spinel grains from the fossil ungrouped achondrite Österplana 065 (Öst 065) recovered from Middle Ordovician limestone in Sweden were studied using Raman spectroscopy and TEM. All the studied chrome-spinel grains have a high density of planar fractures and planar features, not seen in chromites from the other L chondritic Ordovician fossil meteorites. Raman spectra of the host chrome-spinel grain and its planar features are similar and no signatures of high-pressure phases of chromite were found. The planar features occur along planar fractures, are enriched in ZnO, and are most probably produced due to enhanced leaching during terrestrial weathering in the marine sediment. Dislocation densities within two FIB sections prepared from two chrome-spinel grains from Öst 065 are similar to the dislocation densities found within chromite grains from the matrix of Tenham L6 chondrite. Using this observation and taking into account the presence of significant fracturing in all the grains, we conclude that the Öst 065 chrome-spinel grains were subjected to moderate to very strong shock corresponding to shock stages of S4-S6. This makes Öst 065 fossil achondrite the highest shocked fossil meteorite studied so far. This is consistent with the hypothesis that Öst 065 is a piece of the impactor that led to the L chondrite parent body breakup.
  •  
6.
  • Rout, Surya S., et al. (författare)
  • Shocked chromites in fossil L chondrites : A Raman spectroscopy and transmission electron microscopy study
  • 2017
  • Ingår i: Meteoritics and Planetary Science. - : Wiley. - 1086-9379 .- 1945-5100. ; 52:9, s. 1776-1796
  • Tidskriftsartikel (refereegranskat)abstract
    • Chromites from Middle Ordovician fossil L chondrites and from matrix and shock-melt veins in Catherwood, Tenham, and Coorara L chondrites were studied using Raman spectroscopy and TEM. Raman spectra of chromites from fossil L chondrites showed similarities with chromites from matrix and shock-melt veins in the studied L chondrite falls and finds. Chromites from shock-melt veins of L chondrites show polycrystallinity, while the chromite grains in fossil L chondrites are single crystals. In addition, chromites from shock-melt veins in the studied L chondrites have high densities of planar fractures within the subgrains and many subgrains show intergrowths of chromite and xieite. Matrix chromite of Tenham has similar dislocation densities and planar fractures as a chromite from the fossil meteorite Golvsten 001 and higher dislocation densities than in chromite from the fossil meteorite Sextummen 003. Using this observation and knowing that the matrix of Tenham experienced 20-22 GPa and <1000° C, an upper limit for the P,T conditions of chromite from Golvsten 001 and Sextummen 003 can be estimated to be 20-22 GPa and 1000° C (shock stage S3-S6) and 20 GPa and 1000° C (S3-S5), respectively, and we conclude that the studied fossil meteorite chromites are from matrix.
  •  
7.
  • Schmitz, Birger, et al. (författare)
  • Meteorite flux to Earth in the Early Cretaceous as reconstructed from sediment-dispersed extraterrestrial spinels
  • 2017
  • Ingår i: Geology. - 0091-7613. ; 45:9, s. 807-810
  • Tidskriftsartikel (refereegranskat)abstract
    • We show that Earth’s sedimentary strata can provide a record of the collisional evolution of the asteroid belt. From 1652 kg of pelagic Maiolica limestone of Berriasian–Hauterivian age from Italy, we recovered 108 extraterrestrial spinel grains (32–250 μm) representing relict minerals from coarse micrometeorites. Elemental and three oxygen isotope analyses were used to characterize the grains, providing a first-order estimate of the major types of asteroids delivering material at the time. Comparisons were made with meteorite-flux time “windows” in the Ordovician before and after the L-chondrite parent-body breakup. In the Early Cretaceous, ∼80% of the extraterrestrial spinels originated from ordinary chondrites. The ratios between the three groups of ordinary chondrites, H, L, LL, appear similar to the present, ∼1:1:0.2, but differ significantly from Ordovician ratios. We found no signs of a hypothesized Baptistina LL-chondrite breakup event. About 10% of the grains in the Maiolica originate from achondritic meteorite types that are very rare (<1%) on Earth today, but that were even more common in the Ordovician. Because most meteorite groups have lower spinel content than the ordinary chondrites, our data indicate that the latter did not dominate the flux during the Early Cretaceous to the same extent as today. Based on studies of three windows in deep time, we argue that there may have been a gradual long-term (a few hundred million years) turnover in the meteorite flux from dominance of achondrites in the early Phanerozoic to ordinary chondrites in the late Phanerozoic, interrupted by short-term (a few million years) meteorite cascades from single asteroid breakup events.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy